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Debris fences are commonly used by states, in conjunction with a concrete
parapet, to protect railway tracks. Their use limits the intrusion of debris that could
damage tracks or clutter rail lines. Due to a lack of previously crash-tested systems, the
safety performance of such designs are largely unknown. The lowa Department of
Transportation (DOT) desired that researchers at the Midwest Roadside Safety Facility
(MwRSF) design a crashworthy debris fence mounted on top of a concrete parapet to
meet the Manual for Assessing Safety Hardware (MASH) TL-3 crash test conditions.
Part 1 of this thesis details the literature review and design of a crashworthy debris fence.

Part Il of this thesis details the results and analysis of 17 bogie tests that were
conducted in support of the development of a non-proprietary barrier. These dynamic
tests were conducted to evaluate the effectiveness of the modified Midwest Guardrail
System (MGS) in both strong and weak soils. The bogie tests were conducted using steel
tubes with varying cross-section geometries, embedment depths, and two different soil
types. These parameters were investigated to evaluate their importance on the overall

post-soil interaction forces.
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1 INTRODUCTION

The following thesis is a culmination of two independent topics. The first,
consists of the development of vertical posts to be used in a MASH TL-3 compliant
debris fence for the lowa DOT. To limit vehicle interaction, during an impact scenario,
these posts need to be flexible enough to yield backwards, but they also need to be rigid
enough to withstand maximum anticipated wind loads. This resulted in the selection of
27s-in. outside diameter ASTM F1083 regular grade schedule 40 piping spaced at 8 ft
(2.4 m) centers as the vertical posts to be used in this debris fence design.

The second topic in this thesis consists of the analysis of 17 bogie tests completed
with rigid posts in soil. During this testing series the post width, embedment depth, and
soil type were differentiated to determine the affect each individual parameter had on the
overall post-soil interaction forces. This analysis yielded inconclusive results overall, but
the post-soil interaction forces did increase as the width, and embedment depth increased,
as well as when a stronger soil type was used. Additional testing is recommended to

further determine the result of these parameter variations.



PART I

2 INTRODUCTION - DEBRIS FENCE
2.1 Background and Problem Statement

When roadways pass over railway tracks, there is a risk that road debris may fall
and damage tracks, clutter rail lines, or potentially cause concerns for train stability and
safety. To prevent debris from interfering with train operations, a debris fence may be
installed in conjunction with bridge rails on overpasses. In some circumstances, there is
limited right-of-way adjacent to the travel lanes, and the fence may be located within a
vehicle’s Zone of Intrusion (ZOI), which is the lateral extent that a vehicle extends over
the top-front face or corner of a barrier during an impact scenario.

The lowa Department of Transportation (DOT) Office of Rail recently requested
that the Midwest Roadside Safety Facility (MwRSF) develop designs for a debris fence,
which could be attached to the top of a concrete bridge rail to prevent road debris from
falling onto railroad tracks below. However, no debris fence has been crash-tested
according to the American Association of State Highways and Transportation Officials
(AASHTO) Manual for Assessing Safety Hardware (MASH) Test Level 3 (TL-3)
specifications [1].

Debris fences attached to bridge rails are subject to two major concerns. If the
debris fence is located within the Zone of Intrusion (ZOIl), it must not produce excessive
occupant compartment deformations, vehicle snag, nor occupant risk due to the presence
of stiff beam and post members. However, the fences must be strong enough to withstand

live and dead loads from the bridge. It is desirable that, if an impact results in contact
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with the fence, the fence be retained on the overpass and not produce additional debris on

the tracks below.

Thus, lowa requested a review and evaluation of existing configurations of
pedestrian fence and bridge railing combinations, as well as attachments to the top and
sides of concrete barriers, and a recommended debris fence configuration that would
likely meet crashworthiness requirements under MASH TL-3 impact conditions.

2.2 Research Objectives

The objective of this research was to determine a parapet and vertical posts to be
used in the development of a MASH TL-3 compliant debris fence system attached to a
crashworthy concrete bridge parapet design. This design will be used along high-speed
roadways and must satisfy safety performance criteria during impact scenarios. In
addition, this design must comply with current lowa DOT Standards for the usage of
chain-link fences near the travelled way.

Phase | of the research consisted of a literature review of previously crash-tested
fences mounted on concrete parapets and Zone of Intrusion (ZOIl) details. In addition,
current fence designs used by states were reviewed to compile details regarding fence
geometries, key components, and connection details. MwRSF also collected information
on debris fence design standards to ensure the design will meet wind load, and dead load
requirements.

Phase 11 of the research effort will consist of the crash testing and evaluation of
the proposed debris fence design from Phase I. Prior to executing Phase |1, the lowa DOT

and railroad industry will review the proposed design and provide comments and
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recommendations as well as determine if full-scale crash testing of the proposed system

is desired.



3 DEBRIS FENCE LITERATURE REVIEW
3.1 State Designs
States through their individual Departments of Transportation are responsible for
maintaining design standards for roadside structures, including barriers and barrier
attachments. A literature search was conducted to identify standard debris fence designs,
also known as vandal protection fences, bridge safety fences, and railroad approach

fences. Results of this review are summarized in Tables 1 through 3.



Table 1. State Standards — Fence Details

Vertical Posts

Horizontal Stiffeners

Top of Height Ahove Parapet to the
Fence . Parapet i i : Center of Rail
State ID A Fence Design arap: Length Outside Spacing vertical Post |y iiional | iffener | OUSI%® - )
Height Height (i) | Slope . Diameter Attachment to . | Diameter |5 1|o.it ol oot 2l pait 4] pair = | Additional Information or Components
() (in.) ) (ft) Parapet Information | Quantity ) Rail 1|Rail 2|Rail 3(Rail 4(Rail 5
n) arape )V iny | i) | n) | Gn) | (in)
. Vertical Top Concrete HSS Steel (3in. x )
California 1 6 Mounted 42 - 735 - 5t010 Embedment | 2in. x 316 n) - - - - - - - Tension Wire
Delaware | 2 5 <”H_M_u”ﬂ_ﬁwgg : MV | 605 | 2875 10 Base Plate ; 2 166 | 3 |ss| - | - | - Diagonal Truss Rods
Delaware 3 7 ouﬂuwmm“s - 4H: 1V 74.375 2.875 10 Base Plate - 4 1.66 3 | 39 |585(69.63| - Diagonal Truss Rods
Florida 4 6 Curved Back - - Varies 35 10 Clamps - 4 - - - - - - Tension Wires
Mounted
Angled Top 5ftto6ft8|  Concrete  [HSS Steel (4in.x . . .
Idaho 5 - Mounted - - 106 - in Embedment | 2in.x3161n) 5 - 6 | 32 | 64 |70.75| 94 HSS Steel (2in. x 2 in. x 3/16 in.)
ndaa | 6 | sore | VercalTop - . varies | 2875 10 Base Plate . 2 w |- -] -] -] - .
Mounted
Mounted on Road .
lowa 7 6 Road - - 72.75 2.875 - Embdedment - 2 1.66 - - - - - Diagonal Brace posts
Kansas 8 6or8 Vertical Back 32-40 - Varies 2.875 8 Clamps - 2 1.66 - - - - - -
Mounted
Maryland | 9 7 o”\mwmmmt 2 . 74375 | 2875 ; Base Plate . 4 166 | 3 | 30 |s585 6063 - Diagonal Truss Rods
Maryland | 10 5 | Verical Top : . 605 | 287 ; Base Plate ; 2 166 | 3 |ss| - | - | - Diagonal Truss Rods
Mounted
Minnesota 11 6 <”\-_N_Vncﬂhﬁ_8 32-44 - 72 2.875 10 Base Plate - 1 1.66 - - - - - | Tension Wire and Diagonal Brace Posts
Nebraska | 12 g | VericalTop 0 MV | 72 35 8 Base Plate . 3 we [ 4@ -|- .
Mounted
Nebraska | 13 7 | Vertical Back @ . 1065 | 35 8 Clamps ; 3 166 |2 ||| |- ;
Mounted
Newlersey| 14 7 | CunedTop 2 . 75 . . BasePlae | oo oe inX) . 4 |32 || 74| - | HsSSteel (L5inxL5in.x 18in)
Mounted 2in.x U/4in.)
NewYork | 15 | Varies | VErcaIBack gy . Varies | 2875 10 Clamps . 3 ws |- - -] -
Mounted
Vertical Back
Oregon 16 8 Mounted 29 - 120 4 10 Clamps - 2 1.66 - - - - - -
Curved Back
Oregon 17 10 Mounted - - - 4 10 Clamps - 4 1.66 - - - - - -
Texas 18 8 Vertical Back - - 130 4 8 Clamps - 1 1.66 - - - - - Diagonal Truss Rods
Mounted
Wisconsin | 19 g | AndledTop 2 . 855 | 23755 8 Base Plate . 3 w |- -] .
Mounted




Table 2. State Fence Designs by Percent

State Fence Designs

Vertical Top Vertical Back Curved Top Curved Back Angled Top
Mounted Mounted Mounted Mounted Mounted
33.33% 27.78% 16.67% 11.11% 11.11%

Table 3. State Parapet Attachment Methods by Percent

State Parapet Attachment Methods

Base Plate

Clamps

Concrete Embedment

50.00%

38.89%

11.11%




3.1.1 California

The California Department of Transportation (Caltrans) uses the combination of a
vertical-shaped, concrete parapet and a top-mounted, vertical fence to safely keep
pedestrian debris away from railroad tracks. The concrete railing used by Caltrans has a
height of 40 in. (1,016 mm), and the debris containment fence is mounted 6 in. (152 mm)
behind the front face of the parapet. This design is shown in Figure 1 [2].

The debris fence is attached to the top of parapet by anchoring the vertical posts 8
in. (203 mm) into the concrete using a mortar backfill. The rectangular vertical posts
extended a total of 6 ft-1% in. (1.9 m) above the concrete parapet and were placed along
the barrier every 5 to 10 ft (1.5 to 3.0 m). The chain-link fabric specified by Caltrans is 6
ft (1.8 m) tall and is made of up a 1-in. (25-mm) diamond-shaped mesh and has a
knuckled selvage on the top and bottom of the wire mesh. This mesh is connected to the
fence structure by clamping the fence horizontally along the top of the system and
vertically at the beginning and end of the parapet. The mesh is additionally connected to
the vertical members with vinyl-coated, fabric ties spaced 1 in. (25 mm) apart. This

design is shown in Figure 2 [2].
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Figure 2. Chain Link Railing [2]
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3.1.2 Delaware

Delaware DOT uses two different designs for debris fences. The first design is a
vertical chain-link fence mounted on top of a parapet and connected to the parapet with a
baseplate and four %z-in. (16-mm) diameter threaded anchor studs. The chain-link fabric
of this system measures 5 ft (1.5 m) in height and contains a 1-in. (25-mm) diamond
mesh made out of # 9-gauge wire. The system uses 2% -in. (64-mm) nominal diameter
pipes spaced in 10 ft (3 m) increments as vertical support posts, two 1%s-in. (32-mm)
nominal diameter pipes as longitudinal stiffeners, and the fence is sloped downward
using a ¥-in. (10-mm) diameter truss rod. Single #9 gauge or double #13 gauge ties are
used to connect the wire mesh to the vertical and horizontal members. The fence system
is shown in Figure 3, and the mounting and connection details are shown in Figure 4 [3].

The second design used by the state of Delaware is a curved chain-link fence
structure mounted on the top of a concrete rail, with a wire mesh height of 7 ft (2.1 m)
and using the same base plate as the first system. The sizing and spacing of the vertical
members, horizontal stiffeners, and the connection of the wire mesh to the members and
stiffeners are the same for both Delaware designs, but a total of four horizontal stiffeners
are used in this design. The mounting and connection details are shown in Figure 4, and

the fence system is shown in Figure 5 [3].
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Figure 3. Delaware Bridge Safety Fence, Type 1 [3]



12

. SCALE : NTS
5 Z FRONT 1iGE OF r
£ = EnﬁN» R |4 i
_ o : e ey & B}
D - PUTE & TG - PR P Py ..*. I
Y . Yy \,{\.ﬁ.g.ﬁ;s n?.ﬁ::ﬁl%l.l.xn. 10500, W u_ L.
! fa L4 0.0, POST— : o o BT TR T 2 el g
1 R o B : 2
P L T _ 7 ol
4 | O 1L I..g:.l.é- T
Li -@ r.vn_‘-.r...!usaj T SO HOLE (17| %I@:
e : A

X

1) POST SAAOING - POST SAAONG 10 S CETERVINID Y THE CONTRACTOR AND INGLURED
N THE WORKING DRAWINGS. EACH POST MUST 3£ A VINIMUM OF 1°2" FROM ANY
PARAPET JOWT,

1) WORCNG DRAWNGS - WORONG CRENINGS WILL B€ SUBMITTED BY
THE CONTRACTOR TO THE ENGINEER FOR REVEW

DELAWARE BRIDGE SAFETY FENCE APPROVED  _swarmsowsu Souwo

S —

DEPARTMENT OF TRANSPORTATION STANDARDNO.  M-1002017) SHT. 3 OF 3 RECOMMENDED  sowrsovmt s;wwsw

Figure 4. Delaware Bridge Safety Fence, Connection Details [3]
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Figure 5. Delaware Bridge Safety Fence, Type 2 [3]
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3.1.3 Florida

The Florida Department of Transportation (FDOT) uses a curved fence mounted
on the back of a concrete parapet to reduce the amount of debris on and around railroad
tracks. The FDOT’s design standards show that this fence can be used in conjunction
with a 36-in. (914-mm) tall, single-slope concrete parapet, but the size and type of barrier
can vary [4].

Florida uses a curved chain-link wire mesh fence structure mounted to the back of
a concrete parapet for railroad debris protection. Vertical posts are galvanized, schedule
40 tubes, with a 3 in. (76 mm) nominal diameter. There are no structurally-stiff horizontal
members, and lateral stiffness is obtained by using four cables wound within the wire
mesh fence. Each vertical member is attached to the parapet with two pipe clamps, which
are bolted to the concrete parapet with %-in. (10-mm) diameter bolts. The chain-link
fabric is composed of a 2-in. (51-mm) diamond mesh that is twisted at the top and has a
knuckled selvage at the bottom of the fence. The mesh is connected to the posts and
tension cables with wire ties. System drawings and connection details are shown in

Figures 6 through 8 [4].



15

Post Spacing (See Note 1)
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FENCING NOTES

FENCE INSTALLATION:

I'-0"_|Minimum from free end

Approach Slab (Flexibie Pavement Approach m\mvl\
Shown, Rigid Pavement Approach Slab Similar)

ELEVATION OF OUTSIDE FACE OF RAILING

NOTES:

A Puil Post Assembly is required at maximum intervals of 500°-0". See Sheet 3.

Install posts plumb (within a tolerance of + 1%"). Use shim plates as required to achieve plumb. The required quantity and
thickness of shim plates will be determined in the field. Install chain link fence in accordance with ASTM F567 as applicable.

TRAFFIC RAILING DETAILS:

See Superstructure Sheets for Traffic Railing details.

LIMITS OF FENCING:

Limits of fencing are from begin of approach slab at Begin Bridge to end of approach slab at End Bridge, unless otherwise

shown in the plans.
PAYMENT:

Payment will be made under Fencing, Type R. Payment includes all materials and labor required to complete installation of the fence.

Bridge Deck (shown)
or Raised Sidewalk

1'-0" | Minimum from ¢ Expansion
Joint (shown] and ¢ Open Joint
in Traffic Railing (Typ.)

TYPICAL SECTION
ON TRAFFIC RAILING

* Do not anchor Fencing to the top of Traffic Railings.

CROSS REFERENCE:

For Table of Fence Components, Table of Post Attachment Components, View A-A and Detail "A"

see Sheet 2.
For Pull Post Assembly Detail for Traffic Railing see Sheet 3.
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Figure 6. Florida Bridge Fencing Over Railroad, Sheet 1 [4]
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TABLE OF CHAIN LINK FENCE COMPONENTS

TABLE OF POST ATTACHMENT COMPONENTS

Pipe Clamp Connection
(see Detail on Sheet 3)
(Typ.)

-Traffic Railing

Traffic Railing

3
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Min. "
in. |\ %

|
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(134" for Single-Slope)
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Pipe Clamp

POST ATTACHMENT NOTES

ASTM ASTM
COMPONENT COMPONENT INFORMATION COMPONENT COMPONENT INFORMATION
DESIGNATION DESIGNATION
Posts F1083 Galvanized Steel Pipe - 3" NPS, Schedule 40 Regular Grade Pipe Clamps A7 eu».wm\ meMm 36 Y Steel R
Chain Link Fabric A392 Zinc Coated Steel - 9 gage (coated wire diameter), Class 2 Coating Base Plates A36 or ¥ Steel R
(2" mesh with twisted A709 Grade 36
top and knuckled A491 Aluminum Coated Steel - 9 gage (coated wire diameter) A36 or ‘ A i :
bottom selvage) Shim Plates A709 Grade 36 or Plate thicknesses as required; Holes in shim
1 B209 Alloy 6061-T6 plates wiil be %' 8
F668 Polyvinyl Chloride (PVC) Coated Steel - 9 gage Class 2b or 8221 Alloy 6063-T5
Tie Wires F626 Zinc Coated Steel Wire - 9 gage Spacers - W.W“.wnﬁ ﬂwnnhww.mm o< moﬂww_. ~a ww-wn on trafflc
Qc "
Brace Bands F626 12 Gage (Min. thickness) x %" (Min. width) Steel Bands (Beveled or Heavy) E S | Adhesive Anchor Rods F1554 Grade 36 Fully threaded me&mmm Anchor Rods ~ %' @ x 6
3% (no spacer) or %' @ x (6" + spacer thickness)
Tension Bars F626 ¥6" (Min. thickness) x 3" (Min. width) x 6'-10" (Min. height) Steel Bars Mm C-I-P Anchor Rods F1554 Grade 36 Hex Head Anchor Rods ~ %' @ x 6" (no spacer)
TO or %' @ x (6" + spacer thickness)
Tension Bands F626 14 Gage (Min. thickness) x %" (Min. width) Steel Bands Bolts A307 %" @ x 4% Hex Head Bolts for Pipe Clamp
Miscellaneous Fence o Zinc Coated Steel ~ (includes post or loop caps, horizontal and brace rail ends, Cunmettjons.tdiPosts
Ci ination rail ends, boulevard clamps and all other misc fittings & hardware) Nuts A563 an z:%m for Pipe Clamp
onnections
Type II (Zinc Coated Steel Wire) - 7 gage, Class 4 Coating ~
Tension Wire 4824 & A817 B - Washers F436 Flat in..m:ma for Pipe Clamp
Type I (Aluminum Coated Steel Wire) - 7 gage Connections
Bearing Pads @ In accordance with Specification Section 932
Hog Rings F626 Zinc Coated Steel Wire - 12 gage (Plain Neoprene) for Ancillary Structures
Brace Rails F1083 Galvanized Steel Pipe - 14" NPS, Scheduie 40 Regular Grade

ANCHOR RODS, NUTS AND WASHERS:

After the nuts have been tightened, distort the Anchor Rod threads to prevent
removal of the nuts. Coat distorted threads and exposed trimmed ends of anchors
with a galvanizing compound in accordance with Specification Section 562.

COATINGS:

Hot-dip galvanize all Nuts, Washers, Bolts, C-I-P Anchor Rods, Adhesive Anchors
and Fence Framework (Posts, Internal Sleeves, Shim Plates, Base Plates, Pipe
Clamps and Spacers) in accordance with Specification Section 962. Hot-dip
galvanize Fence Framework after fabrication.

ADHESIVE-BONDED ANCHORS AND DOWELS:
Adhesive Bonding Material Systems for Anchors and Dowels will comply with

installation.

WELDING:

Specification Section 937 and be installed in accordance with Specification
Section 416. Cutting of reinforcing steel is permitted for drilled hole

All welding will be in accordance with the American Welding Society Structural
Welding Code (Steel) ANSI/AWS D1.1 (current edition). Weld metal will be E60XX
or E70XX. Nondestructive testing of welds is not required.

Single-Slope
Other Traffi

VIEW A-A

Railings

N

DETAIL "A"

Spacer must be manufactured

(i.e., steel or aluminum)

from an incompressible material

CROSS REFERENCE:
For location of View A-A and Detail "A" see Sheet 1.

LAST
REVISION

11/01/17

DESCRIPTION:

REVISION

FY 2018-19
STANDARD PLANS
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550-013
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20f 3

Figure 7. Florida Bridge Fencing Over Railroad, Sheet 2 [4]
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Pull Post Assembly (required at

intervals of 500'-0")

| _3-0" + Expansion Joint Opening (See Note 2)
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36" Single-Slope shown) ]

Tie tension wire to post with 9
gage zinc coated tie wire (triple wrap

required at both ends of tie wire) (Typ.)

\
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Y% R Pipe

J
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1-6" |

EXPANSION ASSEMBLY DETAIL

(Required only at expansion joint locations
where total movement exceeds 6")

t— Expansion Joint Opening

1%° R Spacer
(See Note 3)

| |
il 1 ™
Post Cap Hog Rings @  Tension ¢ ; i P "
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to allow for joint movement
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0g Rings Tension Chain Link
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P00 0007600 % h R RXRXARRK P00 07676760 704 XX % Brace Rail
XXX !
"2 Ties & 1-0¢ | | _
' Centers (Typ.) Brace Rail I
L
_ _ _ _ NOTES:
! frace fall ! ' : 1. For treatment at bridge ends, see Sheet 1.
_ 2 _ 2. Expansion Joint Opening is the width at the
A Ties 2. Ties @ 2-0" ¥ . time of fence installation.
_ Centers Tension Bands (6 required Centers _ A 3. Spacer thickness shown Is for Single-Slope
per Tension Bar ~ Space 1 Traffic Railings. Ad just thickness as required
' Equally @ I'-3" Maximum ' T X for other Traffic Railings.
_ Centers) (Typ.) Tension Bar fone each | _ s _
side of puli post) %
LR

[} [ H H &,
L 9l x 3 x Y Thick Ry .\\ / | — %" @ Holes for X | — 3" @ Holes for
Bearing Pad ™ s SO | %' @ Anchors * 4+ o———- l& %' @ Anchors
\\I earing | M/‘ T Typ.) Wa ; (Typ.)
N _ :
Pipe Clamp ¢ Post and ¢ %" @ Holes ) i n._mwm= e r ":m.
for %' @ Bolt with Hex '
P Nut and Washer 1 6% _ 1% 9%"
9k
SPACER DETAIL
PIPE CLAMP CONNECTION DETAIL PIPE CLAMP DETAIL (Must be manufactured from
(Connection without spacer shown, an incompressible material
Connection with spacer similar) (Fe, steel-or aliminum))
Y FD et BRIDGE FENCING (OVER RAILROAD) o
/0117 3 STANDARD PLANS 550-013| 30of 3

Figure 8. Florida Bridge Fencing Over Railroad, Sheet 3 [4]
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3.1.4 Idaho

The Idaho Department of Transportation recommends using an overhanging fence
mounted on a parapet to protect pedestrians near the travelled way. The fence posts are
directly embedded into the concrete of a vertical 27-in. (686-mm) tall rail system and is
placed along the centerline of the 9-in. (229-mm) wide vertical parapet [5].

The combination pedestrian fence system and parapet measure a total of 10 ft-1
in. (3.1 m) in height. The vertical members of the combination system are made out of
hollow steel tubes measuring 4 in. x 2 in. x 3/16 in. (102 mm x 51 mm x 5 mm), which
are spaced between 5 ft and 6 ft-8 in. (1.5 and 2 m) apart. The fence is 8 ft-7 in. (2.6 m)
tall and the upper 3 ft (0.9 m) of the posts are angled at 41 degrees over the roadway. The
system uses five horizontal stiffeners made out of 2-in. x 2-in. x 3/16-in. (51-mm x 51-mm
x 5-mm) hollow structural steel. There is an additional 2-in. x 2-in. x-3/16 in. (51-mm x
51-mm x 5-mm) horizontal member that is located 15 in. (381 mm) above the parapet,
which could mitigate vehicle protrusion from engaging the vertical posts. The members
are then connected to a 2-in. (51-mm) square mesh wire fabric with wire ties. Details of

this design are shown in Figure 9 [5].
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Figure 9. Idaho Protective Fence for Combination
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3.1.5 Indiana

Indiana DOT currently utilizes a vertical pedestrian fence mounted on top of a
Type FT or FC safety shape concrete parapet. The fence structure uses 2%2-in. (64-mm)
nominal diameter steel tube posts spaced 10 ft (3.0 m) on center. These posts are
connected to upper and lower horizontal stiffeners with nominal diameters of 1%4 in. (32
mm). The fence can be adjusted for the desired height based on the size of the vertical
post and the placement of the horizontal stiffeners. Wire ties are connected to the steel
frames spaced at 15 in. (381 mm) intervals or less. The vertical members are then secured
to the concrete parapet through a base plate that is connected with four %&-in. (16-mm)

diameter bolts. CAD details are shown in Figure 10 [6].
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Figure 10. Indiana Bridge Railing Pedestrian Fence [6]
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3.1.6 lowa

The lowa Department of Transportation uses a chain-link fence in conjunction
with a pedestrian rail for debris and pedestrian containment purposes. The lowa design
consists of a 6-ft (1.8-m) tall chain-link fence containing a 2-in. (51-mm) diamond mesh,
made out of no. 9 wire and has knuckled selvages at the top and bottom of the fence and
the 6-ft %-in. (1.8-m) tall vertical tubes with a nominal pipe diameter of 2% in. (64 mm)
are mounted along the fence. Additionally, the 2-in. (51-mm) nominal diameter tubes
were utilized on the bottom of the fence, and 1%4-in. (32-mm) diameter tubes were used
along the top of the fence. The wire mesh was connected to the vertical members by
using wire ties or clips spaced every 12 in. (305 mm), and the mesh was connected to the

horizontal members using wire ties or clips spaced at 24 in. (610 mm) intervals [7].
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Figure 11. lowa Protection Fence Design [7]
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3.1.7 Kansas

The Kansas Department of Transportation (KDOT) uses two different fences for
pedestrian and debris control over railroads, which vary only on height. These fences are
mounted to the back of a 35-in. (889-mm) tall, safety-shape concrete parapet [8].

An 8-ft (2.4-m) tall fence is required when the shoulders of the bridge are less
than 6 ft (1.8 m) wide, but a 6-ft (1.8-m) tall fence can be used when the bridge shoulders
are greater than or equal to 6 ft (1.8 m). The round vertical posts consist of 2%2-in. (64-
mm) nominal diameter pipes spaced 8 ft (2.4 m) on centers. Two 1%-in. (32-mm)
nominal diameter tubes are used as horizontal stiffeners at the top and bottom of the
fence. Additional 3%-in. (10-mm) diameter threaded rods are used to maintain tension in
the mesh. The vertical posts are mounted to the back of the parapet with two pipe clamps
and U-bolts, and the base of the each vertical member is connected to a piece of angle
iron that is attached to the parapet using a %-in. (16-mm) diameter bolt. The fence is
made from 2-in. (51-mm) chain-link fabric that is galvanized or PVC coated, and it
contains a knuckled selvage on both the top and bottom of the fence. This wire is then
connected to the fence structure with #9 gauge wire ties. The taller design is shown in

Figure 12, and the shorter design is shown in Figure 13 [8].
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the pasts and for the top and bottom rail. The pipe shall
conform to Section 1600 of the Standard Specifications for
Road and Bridge Consfruction.
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5-0-12 Added Duplex Coating P | TUF
1-28-0 Fence Haight P KFH
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Br. No. Sta.

" RAILROAD PROTECTIVE FENCE
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Figure 12. Kansas Railroad Protective Fence for Shoulders Less than 6 ft [8]
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RAILROAD PROTECTIVE FENCE

U.P. and BNSF R.R.
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Figure 13. Kansas Railroad Protective Fence for Shoulders Greater than 6 ft [8]
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3.1.8 Maryland

Maryland DOT has two standard debris fence designs. The first system has a
radial curve at the top of the fence and is mounted on top of a 32-in. (813-mm) tall
vertical parapet. The other design is not curved and is mounted on top of an F shape
concrete parapet [9].

The radially-curved fence design is shown in Figures 14 and 15. The round
vertical posts are 2% in. (64 mm) nominal diameter, which are welded to base plates.
Four %-in. (16-mm) diameter bolts are used to attach the base plate to the top of the
parapet. Four 1¥%-in. (32-mm) nominal diameter, horizontal tube stiffeners are used for
the fence frame. The fence is comprised of a #6 gauge mesh with a 2-in. (51-mm) gap
opening connected to the frame with #9 gauge wire or double #13 gauge wire [9].

The vertical fence design is shown in Figures 16 and 17. Vertical posts were 2%5-
in. (64-mm) nominal diameter pipes welded to base plates and bolted to the top of the
parapet with four %-in. (16-mm) bolts. Two 1%-in. (32-mm) nominal diameter horizontal
tube stiffeners are attached to the post with saddle clamps. The fence is constructed with
a #6 gauge mesh and a 2-in. (51-mm) gap opening. The chain link is then connected to
the vertical and horizontal members of the system with #9 gauge wire or double #13

gauge wire [9].
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Figure 14. Maryland Type | Chain Link Safety Fence [9]
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Figure 16. Maryland Type Il Chain Link Safety Fence [9]
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3.1.9 Minnesota

The Minnesota Department of Transportation (MnDOT) uses a debris fence
mounted on top of a vertical concrete parapet. The concrete railing that is currently
implemented in Minnesota can vary between 32 and 44 in. (813 and 1,118 mm) in height,
depending on the application. The top of the parapet measures 15 in. (381 mm) wide, and
the front face of the fence is placed at a minimum of 4% in. (114 mm) away from the
front of the concrete parapet, as is shown in Figure 18 [10].

The top-mounted fence structure contains a 6-ft (1.8-m) tall, chain-link wire
mesh. Vertical posts, measuring 6ft-1 in. (1.9 m) long, with a nominal diameter of 2% in.
(64 mm), were placed on 10-ft (3.0-m) centers. Cylindrical, 1%-in. (32-mm) nominal
diameter tubes were used as longitudinal stiffeners along the bottom of the mesh and
along the top at expansion joints. An additional 7-gauge, galvanized steel tension wire
was located at the top of the fence for increased longitudinal support. This wire could
also potentially prevent fence elements from falling off the parapet in a high wind loading
or impact event. A baseplate is used to connect the vertical posts to the concrete parapet.
The wire mesh is connected to the members and tension wire with vinyl coated fabric

ties. Additional details are shown in Figure 19 [10].
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3.1.10 Nebraska

The Nebraska Department of Transportation (NDOT) currently utilizes two
different fence designs for debris protection over railway overpasses. Both of these fence
designs are used in conjunction with a concrete parapet bridge rail. This concrete bridge
rail parapet is shown below in Figure 20 [11].

One of the fence designs used by Nebraska contains a vertical 6-ft (1.8-m) tall,
galvanized chain-link fence, with knuckled selvage at the top and bottom, mounted to the
top of a concrete parapet with a base plate. The fence is placed at the centerline of the
parapet, 7 in. (178 mm) back from the front face. Vertical posts, are 6-ft (1.8-m) long
cylindrical tubes and are spaced 8 ft (2.4 m) on center along the top of the parapet and
have a nominal diameter of 3 in (76 mm). The bottom of the vertical posts are connected
to a base plate that is bolted to the top of the concrete parapet using ¥2-in. (13-mm)
diameter U-bolts. This design also contains three, 1%-in. (32-mm) diameter longitudinal
stiffeners extending between the vertical posts. This fence design is shown in Figure 21
[11].

Nebraska also utilizes a back-mounted, 7-ft (2.1-m) tall, debris fence system with
galvanized chain-link fence. The vertical posts of the system, measuring 8 ft-10% in. (2.7
m) in length, are spaced 8 ft (2.4 m) on center and have a nominal diameter of 3 in. (76
mm). The bottom of the post attaches into a bent plate that connects to the parapet
through two %2-in. (13-mm) diameter bolts. Three, 1%-in. (32-mm) pipe stiffeners are
used to secure the chain link fabric and provide horizontal support. This fence design is

shown in Figure 22 [11].
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3.1.11 New Jersey

New Jersey DOT uses a curved fence mounted on top of a 32-in. (813-mm) tall
vertical parapet. The curved fence is constructed using 2-in. (51-mm) square vertical
posts and connected with four 1.5-in. (38-mm) square horizontal stiffeners. Each vertical
member is connected to a baseplate that is anchored to the parapet using two %-in. (19-
mm) diameter corrosion resistant steel bolts. The structural members are connected to a
1-in. (25-mm) gap size diamond mesh with fabric ties spaced every 6 in. (152 mm) for
the horizontal stiffeners and every 12 in. (305 mm) for the vertical posts. The geometric

details of this design are shown in Figure 23 [12].
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3.1.12 New York

The New York State Department of Transportation (NYSDOT) uses a vertical
fence mounted directly on the back of either a 34-in. (864-mm) tall, safety-shape barrier
or a 42-in. (1,067-mm) tall, vertical barrier. The design utilizes 2%2-in. (89-mm) nominal
diameter pipes spaced in 10 ft (3 m) increments. The posts are attached to the back of the
parapet with two clamps and four ¥-in. (10-mm) diameter bolts. Three 1%-in. (41-mm)
outside diameter horizontal stiffeners are evenly spaced at 2% ft (0.76 m). The fence uses
a 1-in. (25-mm) gap opening, diamond chain-link wire mesh made with 11-gauge wire.

The system design is shown in Figure 24 [13].
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3.1.13 Oregon

Oregon DOT currently utilizes a vertical pedestrian fence mounted on the back of
an F-shape concrete bridge rail and a curved pedestrian fence mounted on the back of a
vertical bridge rail [14].

Posts in the vertical fence design are 3%-in. (89-mm) nominal diameter tubes
spaced 10 ft (3 m) on center. These posts are connected to the backside of the bridge rail
with two clamps, which are fastened to the rail with %-in. (19-mm) diameter bolts. Two
horizontal stiffeners consist of 1 ¥-in. (32-mm) diameter tubes, one located at the top and
one located at the bottom. The stiffeners are connected to a 2-in. (51-mm) gap, diamond
chain-link fence. This fence design is shown in Figure 25, which is labeled as a Type C
Fence Section. Connection details are shown in Figure 26.

The curved fence design contains vertical posts made of 4-in. (102-mm) nominal
diameter tubes spaced at a maximum of 10 ft (3 m) apart. These posts are connected to
the backside of the bridge rail with two clamps, which are anchored to the concrete with
%-in. (16-mm) diameter bolts. Four horizontal stiffeners composed of 1¥%z-in. (32-mm)
diameter tubes are used along the length of the system. The stiffeners are connected to a
2-in. (51-mm) gap, chain-link fence. This fence design is shown in Figure 25, and is

labeled as a Type A Fence Section. Connection details are shown in Figure 26 [14].
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Figure 25. Oregon Pedestrian Fence [14]
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Figure 26. Oregon Protective Fencing Details [14]
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3.1.14 Texas

The Texas Department of Transportation (TXDOT) utilizes a debris fence
mounted to the back of a concrete bridge rail. The Texas T211 vertical concrete parapet
or the Texas T551 safety shape concrete parapet are recommended for the debris fence.

Vertical posts consisting of 3%-in. (89-mm) nominal diameter pipes are spaced 8
ft (2.4 m) on center. The vertical posts are connected to the backside of the concrete
parapet with a clamp and two %z-in. (16-mm) diameter bolts, and a third %-in. (16-mm)
diameter bolt attached the post to the barrier directly. One horizontal stiffener is also
used, which consists of 1%-in. (32-mm) nominal diameter pipes threaded through sleeves
mounted on the top of the posts. The frame is constructed from 9-gauge steel fabric with
a 2-in. (51-mm) diamond gap opening, and it is attached to the posts and stiffeners using
9-gauge steel wire ties. Along the bottom edge of the chain-link fence, a tensioned wire is
attached to the fence using wire ties. The debris fence and concrete parapet are shown in

Figures 27 and 28 [15].
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Overall Length of Fence (See Bridge Layout for Limits)
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PVC Pipe and Fittings to steel posts with UL listed hardware as shown PVC Pipe and Fittings
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AT INTERMEDIATE WALL AT SLAB

JOINTS IN CONCRETE RAIL

N\
b % % Stretcher 8ar @)

\

{— One %« Dia Field
. Drilled Hole in

\ every Stretcher Bar

| Stretcher
! Band

b \wr‘ Terminal
/ Eﬂ@

B
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Wire through drilied hole

in every Stretcher Bar

-

Chain Link Fabric(3)

DETAIL "A"

EXPANSION JOINTS
{No Top Rail or Tension Wire at Expansion Joints)

OUTSIDE ELEVATION OF CHAIN LINK FENCE

(D nss 2500 x 0.216 ASTH A1085 or 4500 Gr 5.

@ hss 1.660 x 0.140 ASTH AS00 Gr B ar 453 Gr B.

@ 9 gauge steel Tie Wires attach chain link fabric to HSS.

(@ 9 gauge steel Hog Rings attach chain link fabric to tension wire.

®) 9 gauge steet Chain Link Fabric, 2* Mesh, knuckle selvage top and battom.
® 7 gauge steel Tension Wire.

@ Contractor must field drill one ¥g" Dia hole in every stretcher bar and
use a 9 gauge steel tie wire to tie one stretcher band and chain link fabric
together. Locate drilled hale for tie wire at approximate mid-height of fence.

@ 6round terminal post at the beginning and end of fence and down the nearest
bent. Attach 6 AWG copper stranded wire to steel post with UL listed hardware
and run other end of copper stranded wire to %" Dia minimum copper-clad steel
rod 8 ft in length. Install ground rod as per Item 550 and this sheet. The
6 AWG copper stranded wire must run through %' Schedule 40 PVC pipe, fittings
and PVC box attached to the back of rail.

® oimension varies on rail types and superstructure type, T551, 7221 and
€221 Ralis = 1" with no overlay, T222 Rall and SSTR Rail = 5' with no overlay,
increased 2 for overlay. On bridges with significant beam camber variable length
in dimension may be anticipated.
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Figure 27. Texas 8 ft Chain Link Fence for Railroad Overpass [15]
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and
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increased 2 for overlay. On bridges with significant beam camber variable

length in dimension may be anticipated.
® See “Material Notes" for threaded anchor rod information.
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CONSTRUCTION NOTES:

Chain link fence post must be plumb unless otherwise
approved.

Test adhesive anchors in accordance with Item 450.3.3,
"Tests". Test 3 anchors per 100 anchors Instailed.
Perform corrective measures to provide adequate capacity
if any of the tests do not meet the required test load.
Repair damage from testing as directed.

MATERIAL NOTES:
All Chain Link Fence materials must conform to standard
specifications, Item “Chain Link Fence” unless shown otherwise.
Galvanize ail steel components uniess noted otherwise.
Provide ASTM A1085, A500 Gr B for HSS 3.500 x 0.216.
Provide ASTM AS00 Gr B or A53 Gr B for HSS 1.660 x 0.140.
Provide ASTM A36 for steel plates,
Anchor bolts must be %" Dia ASTM A307 Gr A fully threaded
rods. Hex nuts must conform to ASTM A563
requirements. Embed fully threaded rods into parapet wall
with a Type 111, Class C, D, E, or F anchor adhesive.
Minimum adhesive anchor embedment depth is 5'. Anchor
adhesive chosen must be abie to achieve a factored bond
strength in tension of 6 kips each anchor {edge distance and
anchor spacing must be accounted for). Submit signed and
sealed calculations or the manufacturer's published literature
showing the proposed anchor adhesive’s ability to develop this
load to the Engineer for approval prior to use. Anchor
installation, including hole size, drilling, and clean out, must
be in accordance with Item 450, “Railing".

GENERAL NOTES:

This sheet must be used with a concrete Traffic or
Combination Rail. Rails that can be used with this sheet
are T551, SSTR, T221, T222, and C221 Rails. Chain link
fence details shown on this standard are adequate for ail
speeds. If used, optional side siot drains shown on rail
standards must not be any cioser than 6" from chain iink
post to edge of side siot drains.

This railing cannot be used on bridges with expansion
Joints providing more than 5 movement.

Payment for fence, including all materials and labor, is
subsidiary to the bridge rail It Is attached to.

Approximate weight of fence = 20 pif.

SHEET 2 OF 2

P~

\:i%i

Dilan

8 FT CHAIN LINK FENCE
FOR RAILROAD OVERPASS

CLF-RO
rur ristd032-1849n [on: 00T [ce: Ta0OT [ow: /TR |cx: 1RH.
©noo_Karch 2018 o o R
REVISTONS. _ |
[ o [ e
|

Figure 28. Texas 8 ft Chain Link Fence for Railroad Overpass Details [15]
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3.1.15 Wisconsin

The Wisconsin DOT utilizes an angled fence mounted on top of a 32-in. (813-
mm) tall, vertical concrete parapet. The debris fence is mounted in the middle of the
parapet, 3 in. (76 mm) behind its front face.

The vertical posts are composed of 2-in. (51-mm) nominal diameter tubes and are
spaced 10 ft (3 m) on centers. The posts are welded to base plates, which are attached to
the top of the parapet using two “2-in. (13-mm) diameter anchor bolts. Three 1vs-in. (32-
mm) nominal diameter horizontal stiffeners are attached to the vertical posts using saddle
clamps. The fence is constructed from 9-gauge, 2-in. (51-mm) gap opening, diamond
mesh, chain-link fence attached to the posts and stiffeners with 9-guage wire ties spaced
approximately 12 in. (305 mm) apart. The system and connection details are shown in

Figure 29 [16].
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ALL FENCE COMFONENTS SHALL BE GALVANIZED STEEL, EXCEPT
THE FENCE FABRIC WHCH MAY BE ALUMINUM- COATED STEEL OR
GALVANIZED STEEL.

FABRIC SHALL CONFORM TO ASTM A491 OR AJS2, CLASS 2. STEEL
RAILS, POSTS AND POST SLEEVES SHALL CONFORM T0 ASTM F1083,
STANDARD WEIGHT PIPE (SCHEDLLE 40k FITTINGS SHALL CONFORM
TO ASTM FB26.

|THE BID ITEM SHALL BE “FENCE CHAIN LI _.
[POLYMER-COATED FEMCE SYSTEW:

ALL FENCE COMPONENTS SHALL BE GALVANIZED STEEL WITH A
COLORED POLYMER-COATING ON THE OUTSIDE.

FABRIC SHALL CONFORM TO ASTM FE668, CLASS 2B. STEEL RALLS,
POSTS AND POST SLEEVES SHALL CONFORM TO ASTM F1063,
STANDARD WEKGHT PIPE (SCHEDULE 403 FITTINGS SHALL CONFORM
TO ASTM FE28. SEE THE "BRIDGE SPECIAL PROVISKINS® FOR
ADDIMIONAL DETAILS.

THE COLOR OF POLYMER-COATNG FOR THS STRUCTURE SHALL BE
(SPECFY: DARK CREEN, BROWN OR BLACK) N ACCORDANCE WITH

THE HD ITEM SHALL BE “FENCE CHAIN LINK POLYMER - COATED
-= FT, B-—-_"LF.

COMPLETE ANY REQURED WELDING OF COMPONENTS BEFORE
GALVANIZING.

POST BASE FLATES SHALL BE FLAT WITH ALL SURFACES SMOOTH
AND FREE FROM WARP AND ALL EDGES SWOOTH, STRAIGHT AND
mer!m.-q ALL PLATE CUTS SHALL BE MACHNE OR MACHINE

L uT.

BASE PLATES, ANCHOR PLATES AND SHMS SHALL BE ASTM A703,
GRADE 3&.

= FT. B-.=." LF.

ALL FOST SPACINGS ARE MEASURED HORIZONTALLY ALONG
THE C/L OF THE POST.

B CAULK ARDUND PERMETER OF BASE PLATE AND FILL PORTION OF
SLOTTED HOLE AROLND ANCHOR BOLT IN SHM WITH NON-STANNG
GRAY NON-BITUMINOUS JOINT SEALER.

% ALTERNATE TO DOUBLE CLAMP: USE LINE RAL CLAMP (BOULEVARD)
OR 180" BRACE BAND, WHCH NAY BE USED WHEN THE POSTS ARE
EITHER BOLTED TO THE POST SLEEVES OR DIRECTLY WELDED TO
THE BASE PLATE.

AYy' DA X 64" LONG GALVANIZED HEX BOLT WITH MUT &
WASHER. &%

YPALTERNATIVE ANCHORAGE: CONCRETE ADHESIVE ANCHORS '/-INCH.
EMBED 7" IN CONCRETE. ADHESIVE. ANCHORS SHALL CONFORM TQ
SECTION 502.2.122 OF THE STANDARD SPECFICATIONS.

[MATTACH FABRIC TO RALS, AND TO FOSTS WITHOUT TENSION HANDS,
WITH TE WIRES IROUND, S-GAGE) SPACED AT 1-0".

[MBOLT RAL TO RAIL END TO SECURE OVERHANG SECTION.
ALTERNATE IS TO WELD RAIL DIRECTLY TO END POST.

MINMUM LENGTH OF TOP RAL BETWEEN SPLICES SHALL BE 20°-0%.
LOCATE SPLICES NEAR '/ POINT OF POST SPACING.

DESIGNER NOTES

THE CHAN LINK FENCE SYSTEM SELECTED FOR THE STRUCTURE
SHALL BE A "METALLIC-COATED FENCE SYSTEM" OR A "POLYMER-
COATED FENCE SYSTEW".

@A r MESH MAY BE USED ON PROTECTIVE SCREENNG N HGHLY
VLLNERABLE AREAS, OR AS STATED N FDON PROCEOLRE U-35-1
FOR PROTECTIVE SCREENING.

PEDESTRIAN RAILING MAY BE USED ON WINGWALL PARAPETS F
CHAN LINK FENCE DOES NOT CONTINUE BHEYOND BRIDGE.

HANDRALS SHALL BE LISED ALONG BRIDGE mBn!L_.—m WHERE THE
SIDEWALK SURFACE. USE 30" NEAR SCHOOL ZONES, F FEASIBLE,
HANDRALS SHALL BE PROVIDED ALONG BOTH SIDES OF SIDEWALK,
FOR HANDRAIL DETAILS SEE STANDARD 37.02.

THE DESKGN ENGNEER SHALL DESIGN THE SUPERSTRUCTURE TO
ACCOUNT FOR THE MAXIMUM 2% SIDEWALK CROSS SLOPE.

CHAIN LINK FENCE DETAIS

S G
APPROYED: NRN n NNEND u».”.‘ mu._

Figure 29. Wisconsin Chain Link Fence Details [16]
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3.2 Full-Scale Crash Test (TTI Test No. 42070-6)

3.2.1 System and Testing Details

In August of 1995, the Texas Transportation Institute (TTI), located at Texas
A&M University (TAMU), published a report titled Crash Testing and Evaluation of
Retrofit Bridge Railings and Transitions [17]. This research report contained findings
from the completion of full-scale crash tests completed at TT1. Test no. 42070-6 was
conducted to determine the safety performance of a vandal protection fence mounted on
top of a New Jersey concrete barrier [17].

The full-scale crash test was conducted according to the AASHTO Guide
Specifications for Bridge Railings Performance Level 2 (PL-2) criteria [18]. A 1991 Ford
F250 pickup truck with a test inertial weight of 5,397 Ib (2,448 kg) impacted the concrete
barrier and vandal protection fence at 62.8 mph (101 kph) and at 20.2 degrees
approximately 33 ft (10.1 m) downstream from the beginning of the system [17].

The New Jersey barrier used in this full-scale crash test extended 100 ft (30.5 m)
in length. The parapet had a height of 32 in. (813 mm), a thickness of 15 in. (381 mm) at
the base, and tapering up to a minimum of 6 in. (152 mm) at the top. The barrier was
reinforced with eight %-in. (13-mm) longitudinal bars and multiple %-in. (16-mm)
vertical stirrups, spaced at 8-in. (203-mm) increments [17].

A vandal protection fence was connected onto the back of the New Jersey barrier.
The fence was 6-ft (1.8-m) tall. Vertical posts were 2%-in. (64 mm) nominal diameter
tubes measuring 7.3-ft (2.2-m) long and were spaced 10 ft (3.0 m) on center. Posts were
connected to the back of the parapet with two saddle clamps and anchored with %-in.

(16-mm) diameter bolts. Between the vertical posts, three horizontal stiffeners were used
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to provide shear continuity and had outside diameters of 1% in. (41 mm). The horizontal

stiffeners were connected to the 1-in. (25-mm) gap, diamond mesh with wire ties. CAD

details and pretest photos of the system are shown in Figures 30 through 32 [17].



53

Truss Rod

1-5/8" Schedule 40 Plpe PVC Cooted
1.66" 0.0. Line Roil.
50,000 psi 2.27 1b/ft
-~ 3" Schedule 40 Pipe PVC Cooted
2.875" O.D. Stroight Post
50,000 psi 579 Ib/ft

17 x 17 Fobric (! goge
core wires. PVC cooted)

5

W 6'-0" [
See Pipe Clamp
. ‘ﬂ Detoil

4

i

I I

-
ﬁ ¥4
-
- ._ \
Existing CMB Bridge Rail

1 ft=0.305m
1in=254mm

8 ® 10~ 0" = 80"~ 0" 9'- 0

>SS

{

5/8" @ x 4 1/2"

Anchor Bolls

with Nuls and

Waoshers

( Rowl Stud §7432

ASTM B633, SC!. Type 3)

G 7/16" @ Drilled
Hole for 3/8" o

Bolt & Nut
(Bottom Clomp
only)
sy
1/4" PL

11/2%

The Texas A&M University System

Revislons

TEXAS TRANSPORTATION INSTITUTE

COLLEGE STATION, TEXAS 77843

Dato__ By |
871795 [oA|

Project No. | Date | Drawn By | Scale
RF 7207 |3/24/8% |C. Karpothy|As Dim|

!-.‘sawr'ﬂ

Titie
Vondol Protection Fence | Sboet No.

on New Jorssy Sofety Sh Vool

Figure 30. Vandal Protection Fence Details [17]



54

£ 5 . s T

Figure 31. Pretest Parapet and Fence Details [17]



55

“'\’\) .
L)
oA
"1.:‘;1:”

N

5

3!
25

R XVR

R

>

%!

X
N

Figure 32. Pretest Fence and Connection Details [17]



56
3.2.2 Test Results

Test no. 42070-6 consisted of a 1991 Ford F-250 pickup truck impacting the New
Jersey shape concrete barrier with vandal protection fence at a speed of 62.8 mph (101
kph) and a 20.2 degree angle. All occupant safety risk values were within acceptable
limits found in the AASHTO PL-2 standards. The test vehicle was safely redirected and
test results were deemed successful. The length of contact spanned 17 ft (5.2 m)
downstream from the point of impact, and the test vehicle exited the system at 49.5 mph
(80 kph) and at an angle of 4.4 degrees. After the vehicle left the barrier, it came to rest
91 ft (27.7 m) downstream from the initial impact point. Overall, the vehicle received
minimal damage, which included bending of the stabilizer bar, floor pan, frame, and front
axle on the right side of the vehicle. In addition to this localized bending, the windshield
was cracked [17].

The system experienced minimal damage during the full-scale crash test. The
lower edge of the chain-link wire was pushed behind the lower horizontal member
between post nos. 5 and 6. Also, the middle horizontal member disconnected on the
upstream side at post no. 5. Researchers determined that the presence of the fence itself
did not result in an adverse safety performance. Post-test damage photos are shown in

Figure 33, and a summary of the test results is shown in Figure 34 [17].



CEREEIs
A A,

Figure 33. Post-test Fence Damage [17]
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Figure 34. Summary of Test Results [17]
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3.3 Minnesota Combination Traffic-Bicycle Bridge Rail

In 1998, Midwest Roadside Safety Facility published a report about the design
and crash tests of a bicycle bridge rail for the Minnesota Department of Transportation.
Two full-scale crash tests were performed on this design, as shown in Figures 35 through
37, which was deemed acceptable in accordance with requirements dictated by NCHRP
Report No. 350 [19].

The test construction included two cables placed within the tubular rails to
prevent detachment of large pieces of debris from causing hazardous conditions to
vehicles and or behind pedestrians below and/or behind the bridge. The usage of cables to
prevent the detachment of large pieces of the bicycle rail structure may be beneficial as a
means of containing debris produced during large truck impacts with the debris fence.
This idea will need to be utilized with the design; since, there is a very high chance that
pieces of the structure will break and fall onto the railway tracks under impact scenarios.

The test construction also tapered the two cables down to the backside of the rail.
This configuration allows the cables to be terminated safely and moves the tensioning

components to the backside of the rail and farther away from any impacting vehicles.
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Figure 37. Tension Cable Taper and Rail Design
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3.4 Caltrans Barrier Mounted Sign and Signpost

In 2011, Caltrans published a report detailing a full-scale crash test of a barrier
mounted sign and signpost. One full-scale crash tests were performed on this design, as
shown in Figures 38 and 39. The barrier redirected the vehicle but the impact created a
high risk to occupants and was not deemed acceptable in accordance with requirements
dictated by NCHRP Report No. 350 [20].

The sign post consisted of a 108-in. (2748-mm) tall post with a 4.0-in. (102-mm)
outside diameter. The sign configuration consisted of two rectangular 36 in. (914 mm) by
60 in. (1524 mm) panels placed back to back. The post was mounted to the barrier
through the usage of a 3%-in. (10-mm) thick saddle, connected with two 1.0 in. (25 mm)
bolts.

The structural adequacy and vehicle trajectory for the test were deemed
acceptable but the occupant risk was deemed unacceptable. The hood penetrated the
windshield and would have covered the occupants in glass in a real world crash scenario.
Additionally, the front grill broke off during the test and would have been a large hazard
to the opposing traffic lanes.

This sign and post configuration was well within the impacting vehicles ZOl. This
failed test demonstrates the importance of moving any barrier attachments as far out of

the ZOI as possible.
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Figure 39. Barrier Mounted Sign Vehicle Impac
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3.5 Real-World Crashes

Parapet-mounted fences are common throughout the United States, but because of
the lack of previous full scale crash data, their safety performance during real impacts has
not been determined. In an attempt to understand the real-world performance of these
devices, three different anecdotal vehicular impact events were analyzed.

3.5.1 Ohio Vandal Protection Fence Crash

An article published on April 5, 2018 describes an impact between a vehicle and a
fence mounted on a parapet on the Valley View Bridge in Valley View, Ohio. The impact
event began when a vehicle on the bridge lost control and careened across multiple lanes
and impacted another vehicle that was heading in the same direction. The second vehicle
then was pushed into the bridge and fence system [21].

The vertical posts of the fence were anchored directly into the top of the parapet,
and the fence structure extended 10 ft (3 m) above the concrete. One horizontal stiffener
was placed in the middle, 5 ft (1.5 m), above the parapet. The article states that it is
believed that if the vandal protection fence wouldn’t have been there, the vehicle would
have most likely plummetted more than 200 ft (70.0 m) off of the bridge. The individual

who impacted the barrier was taken to the hospital for minor injuries [21].



Figure 40. Valley View Vandal Protection Fence Crash [21]

3.5.2 NASS Crash Data

The National Highway Transportation Traffic Safety Administration (NHTSA)
compiles information regarding vehicular crashes within the United States. This resource
was used to locate two real-world crashes between motor vehicles and parapet-mounted
containment fences.

One such impact event occurred in April 2014 between a motor vehicle and a
parapet-mounted fence located in the median. The vehicle was travelling approximately
59.5 mph (95.8 kph) at an angle of 15 degrees when it departed the travelled way and
impacted the parapet and fence combination, as shown in Figure 41. The vehicle then
careened across the road and impacted another traffic barrier on the other side. During
this event, the vehicle did not override the parapet and interact with the fence, which
resulted in no vehicle snagging. Overall, the parapet damage was minimal, but the vehicle

damage was extensive, as shown in Figure 42, which was concentrated on the front
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passenger side of the vehicle. It is believed that damage was related to the second impact

event [22].

Figure 41. View of Barrier at Point of Impact [22]

Figure 42. Vehicle Damae [22]
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Another event consisted of a crash with a sequence of hazards, where the most

severe was a concrete barrier arrangement. Vehicle speed at the point of impact was
estimated to be 41 mph (66.0 kph), and the impact angle was 6 degrees with respect to
the roadway. Although this non-crashworthy system is not recommended for use on the
National Highway System (NHS), it is important to note that no snagging or intrusion
occurred into the fence during impact. The vehicle and system damage were minimal, but
concrete spalling occurred near one vertical post anchor. The impact location and vehicle

damage is shown in Figures 43 and 44 [23].
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Figure 43. Point of Impact [23]
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Figure 44. Vehicle Damage [23]

3.6 Zone of Intrusion

The Zone of Intrusion (ZOI) in roadside safety nomenclature is defined as the
lateral extent that a vehicle extends beyond the top-front corner of a barrier during an
impact scenario. The ZOlI is a very important parameter when attempting to mount items
on top of both rigid and non-rigid parapets, because of the potential for the vehicle to
extend over a barrier and snag on vertical elements. This snag event can lead to excessive
occupant compartment accelerations, projected components, and vehicle redirection into
other lanes of traffic.

3.6.1 Guidelines for Attachments to Bridge Rails and Median Barriers

In February 2003, MwWRSF published a report titled Guidelines for Attachments to

Bridge Rails and Median Barriers [24]. This research report quantified ZOI values for
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multiple parapet geometries from historical crash test data. This effort was completed by

obtaining video and pictures from previous tests and then using video analysis techniques
to determine the lateral extent of the vehicle behind the top-front corner of the parapet.
The research team initially hypothesized that the barrier height would relate best
to the amount of intrusion, but the test data was too limited to confirm this assumption.
Researchers observed that the bumper and bottom portion of the front fender of the
pickup truck were typically crushed during rigid barrier impacts, while the engine hood
and upper front fender panel generally extended over the top of the barrier. This behavior
resulted in the greatest intrusion, generally occurring early in the impact event.
Researchers reviewed crash tests involving rigid barriers ranging from 27% in.
(705 mm) to 42 in. (1,067 mm) tall, impacted with pickup trucks and cars. The maximum
lateral extents over the top leading edge of the rigid barriers were determined using high-
speed video analysis. The ZOl for the pickup truck varied between 8 and 30 in. (203 and
762 mm), and the ZOl for the car varied between 0 and 8 in. (0 and 203 mm), depending
on the parapet geometry and attachments. The report notes that if posts are mounted at
least 7 in. behind the front face of a rigid barrier, the risk of vehicle snag is greatly
reduced, but the authors also noted that offsetting posts to the back of the barrier will not
eliminate all of the vehicle snag concerns for all barriers and impact conditions. ZOlI

values obtained for crash tests on small cars and pickup trucks are shown in Table 4.



Table 4. ZOI Values [24]
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System for Transverse Decks

. . Barrier . Maximum Vehicle
Barrier Class Barrier Name Height (in.) Vehicle Intustion (in.) Component
762-mm (30-in.) New Jersey 20 Small Car 6 Hood / Fender
Safety Shape Pickup 8 Hood / Fender
Single Slope:;lncrete Bridge 32 Pickup 12 Hood / Fender
Concrete with 813-mm (32-in.) F-Shape Bridge Small Car 2 Hood / Fender
Sloped Face . 32
Rail Pickup 8 Hood / Fender
813-mm (32-in.) New Jersey .
Safety Shape Bridge Rail 32 Pickup 18 Hood / Fender
813-mm (32;23 New Jersey 32 Pickup 9 Hood / Fender
Nebraska Open Concrete Bridge Pickup 16 Hood / Fender
Railing (AASHTO Bridge 29 -
_ Guide Specifications) Pickup 14 Hood / Fender
Congretle with 32 Small Car 8 Hood
Vertical Face 813-mm (32-in,) Vertical Wall
32 Pickup 15 Hood / Fender
Texas Tyle T411 Bridge Rail 32 Pickup 24 Hood / Fender
llinois Side-Mounted Bridge - Small Car 0 None
Rail Pickup 13 Hood / Fender
Steel Tubular Rails [S'°! Bridge Rail with Tube Rail 36 Pickup 21 Hood / Fender
System for Transverse Decks
Texas Type T6 Bridge Rail 27.75 Pickup 30 Hood / Fender
California Type 115 Bridge Rail 30 Pickup 30 Hood / Fender
Small Car 6 Hood
Illinois 2399 Bridge Rail 32 -
Steel Tubular Rails Pickup 11 Fender
on Curbs NETC Bridge Rail, Curb y Small Car 3 Hood
Mounted Pickup 12 Hood / Fender
Minnesota Combination Bridge - Small Car 0 None
Concrete / Steel Rail Pickup 24 Hood
Combination Bridge
Rails Small Car 0 None
BR27C Bridge Railing on Deck 42
Pickup 10 Hood
GC-8000 Bridge Rail for 33 Pickup 24 Hood / Fender
. . . Longitudinal Decks
Timber Bridge Rails Wood Bridge Rail with Curb
g 33 Pickup 21 Hood / Fender

3.6.2 Zone of Intrusion Study

In October 2010, MwRSF published a research report titled Zone of Intrusion

Study [25]. This report detailed the results of nonlinear finite element testing using LS
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DYNA simulations to investigate the ZOI for an NCHRP-350 2000P pickup truck [26].

This pickup truck simulation impacted a 40-in. (1,016-mm) tall, F-shape parapet at TL-2
and TL-3 testing conditions. The ZOI was determined to be 5 in. (127 mm). It was
observed that with a barrier height of 40 in. (1,016 mm), the vehicle protrusion over the
barrier was limited to the front corner of the hood and a small section of the fender.

Under NCHRP Report No. 350 TL-2 test no. 2-11 conditions [26], 45 mph (72.4
kph) and at a 25 degree angle, the ZOI for the pickup truck was predicted to be between
1.8in. (46 mm) and 2.5 in. (64 mm). The authors attribute the variation in this ZOI value
to the mesh quality of the simulation model and the overall system geometry.

3.6.3 Zone of Intrusion for Permanent 9.1-Degree Single-Slope Concrete
Barriers

In March 2014, MwRSF published a research report that detailed efforts involving
simulation results from a Wisconsin Department of Transportation (WisDOT) single-
slope concrete barrier. ZOI values were calculated for a pickup truck at three different
single-slope parapet heights. The ZOlI for 36, 42, and 56-in (914, 1,067, and 1,422-mm)
tall barriers were 12.2 in. (310 mm), 6.4 in. (163 mm) and 0 in. (O mm), respectively.
Additionally, during this simulation effort, the left fender always protruded the farthest
behind the barrier, which was followed by the corner of the engine hood [27].

3.6.4 Signs on Concrete Median Barriers

The Texas A&M Transportation Institute (TTI) completed a study in April 2013
to determine the safety of mounting signs on the top of concrete median barriers [28].
This report detailed study efforts, including a literature review, simulation effort, and four

full-scale crash tests.
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The four full-scale crash tests completed by TTI occurred with a 2270P pickup

truck under MASH TL-3 guidelines. During this testing series, a 2.5-in. (64-mm) outside
diameter schedule 80 pipe was used to mount to the sign and the parapet, and different
connection methods were tested between each individual test. During all of the crash
tests, the vehicle extended over the front face of the barrier and contacted the sign and
sign support assembly, but no snagging occurred. The authors determined that that the
addition of the sign assembly did not decrease the safety of the concrete parapet [28].

3.7 Lincoln Nebraska Fence Examples

A survey of two different fences used in close proximity to the travelled way was
completed in Lincoln, Nebraska. The first design consisted of an aesthetic vertical debris
fence mounted on top of a concrete parapet. The second system was very similar to the
protective fence used by lowa, as is shown in Figure 11.

3.7.1 Aesthetic Debris Fence

The first fence example that was analyzed in Lincoln, Nebraska is located near the
corner of North Antelope Parkway and Salt Creek Roadway. This design consists of a
fence and baseplate mounted on the top of a vertical concrete bridge rail. This rail
measures 42 in. (1067 mm) tall, and the debris fence is mounted in the middle of the rail,
8 in. (203 mm) behind its front face.

The aesthetic fence design is composed of wire mesh panels containing cyclic
wave designs on both the top of the mesh structure and on panels that are bolted to the
mesh. Rectangular vertical posts, 5 in. x 4 in. x 3/8 in. (127 mm x 102 mm x 10 mm),
measuring 8 ft-7 % in. (2.6 m) were placed 8 ft (2.4 m) on center. These posts were

connected to panels containing two horizontal stiffeners, one at the bottom and one 4 ft
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(1.2 m) above the parapet and another aesthetic stiffener at the top containing a

sinusoidally-varying design. These panels also contained vertical posts at the beginning
and end of each panel section. All vertical posts and longitudinal stiffeners located in the
mesh structure were fabricated with rectangular steel tube measuring 2 in. x 2 in. X %4 in.
(51 mm x 51 mm x 6 mm). The wire mesh panels were connected to the vertical posts
with a total of six ¥-in. (6-mm) self-tapping screws. A baseplate measuring 8 in. x 8 in. X
% in. (203 mm x 203 mm x 13 mm) , was used to secure the vertical posts to the concrete
bridge rail and was held in place with four 6-in. (152-mm) long by 3/8-in. (10-mm)
diameter anchor bolts. CAD details of both the fence and parapet design are shown in

Figures 45 through 47.
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Figure 45. Aesthetic Debris Fence Bridge Rail Details
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This aesthetic debris fence design was located close to the design headquarters of

MwRSF. This design was examined, because some panels within the fence structure were
missing, as shown in Figures 48 through 50. Under closer inspection, it was discovered
that the self-drilling screws used to secure the fence panels to the vertical posts were
breaking off and ratchet straps were being used to secure the panels to the posts, as
shown in Figures 50 and 51. This design shows the importance of correctly securing the
fence and highlights the need for stronger connections to guarantee that the fence

components do not fall onto the roadway or railway tracks.

Figure 49. Aesthetic Design Missing Panels



Figure 50. Aesthetic Design Missing Panel

‘\ : :.“\ ,’; .
Figure 51. Aesthetic Design Broken Screws
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3.7.2 Combination Rail and Pedestrian Fence

Another design used in Lincoln, Nebraska, and located on the 27" Street and Salt
Creek Roadway overpass, is very similar to the lowa combination pedestrian rail and
debris fence shown in Figure 11. This design, as shown in Figure 52, is representative of
the common, curved, fence designs used by states for pedestrian and debris containment.
There are three longitudinal stiffeners used within the design, one is placed at the bottom
of the fence and the other two are within the curved upper section of the structure. There
is also a hand rail that runs longitudinally along the length of the system. lowa DOT does
not wish to use this system in conjunction with any sort of pedestrian walkway so an

additional handrail would not be needed.

Figure 52. Lincoln Pedestrian Fence
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3.8 Design Standards

3.8.1 lowa Chain-Link Fence Standards

lowa DOT currently specifies criteria for the installation and maintenance of
chain-link fence near the roadway. These guidelines were analyzed to determine design
requirements for a debris fence mounted on top of a concrete parapet [29].

The structural elements used for both the vertical posts and horizontal stiffeners
must meet one of the following requirements:

1. AASHTO M 181 Grade 1 guidelines or ASTM F1083 Schedule 40 and

2. AASHTO M 181 Grade 2 or ASTM F1043 Group IC

The chain-link fabric used in the debris fence design, unless otherwise noted in
contract documents, must include:

1. 9-gauge coated wire with a breaking strength of 1,290 pounds;

N

Height of fabric of 72 inches;

.

Selvage knuckled at both the top and bottom; and
4. Mesh size 2 £ ' inches.
Additionally, the chain-link fabric must conform to one of the following options:
1. Zinc coated fabric meeting requirements of ASTM A 392, Class 2 or
AASHTO M 181 Type 1, Class D;
2. Aluminum coated fabric meeting requirements of AASHTO M181, Type II;
and
3. PVC coated fabric requirements of ASTM F668, Class 2b or AASHTO M181,

Type IV, Class B Fused.
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Any tension wires used within a parapet-mounted debris fence design in lowa

shall either meet requirements of AASHTO M 181 or one of the following:
1. ASTM A 824 or A 817, Type Il, Class 3;
2. ASTM A 824 or A 817, Type 1, and
3. ASTM F 1664, PVC (Vinyl) Coated, Class 2b.
Brace and tie wires must meet requirements of ASTM F 626 and be either zinc or
aluminum coated. They must also meet these additional requirements:
1. Where specified, round metallic-coated tie wires, clips and hog rings shall be
polymer coated to match the color of the chain-link fabric as selected from
ASTM 934 and
2. The coating process and metallic-coated core wire materials shall be in
accordance with ASTM F 668.
The fittings used to secure the chain link to the structural members must comply
with the following:
1. Attach braces to posts using fittings which will hold both the post and the post
and brace rigidly;
2. Use diagonal truss rods of %-in. diameter, round steel rods with appropriate
commercial means for tightening;
3. Furnish a locknut or other device to hold the tightening device in place;
4. Furnish a suitable sleeve or coupling device, recommended by the
manufacturer, to connect sections of top rail and to provide for expansion and

contraction;
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Use stretcher bars no less than % in. diameter, or equivalent cross sectional

area, with suitable clamps for attaching fabric to corner, end, or gate posts;
and

All fittings must conform to AASHTO M 181 or ASTM F 626.

Anchor bolts used to secure the debris fence to the parapet must comply with the

following requirements:

1.

2.

5.

Use full-length galvanized bolts;

Comply with ASTM F 1554, Grade 105, S4 (-20°F);

Threads are to comply with ANSH/ASME B1.1 for UNC thread series, Class
2A tolerance;

The end of each anchor bolt intended to project from the concrete is to be
color coded to identify the grade; and

Do not bend or weld anchor bolts.

Any nuts that are used within the debris fence design must conform to the

following specifications:

1.

2.

Comply with ASTM A 563, Grade DH or ASTM A 194, Grade 2H;

Use heavy hex;

Use ANSI/ASME B1.1 for UNC thread series, Class 2B tolerance; and

Nuts may be over-tapped according to the allowance requirements of ASTM

AS563.

Any washers used in the system must comply with ASTM F 436 Type 1

requirements. The debris fence design may include the need to weld some of the

structural members, and lowa Department of Transportation states that these welds must
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comply with ANSI/AWS D1.1 Structural Welding Code procedures and requirements.

The lowa standards require that items along the roadway be able to withstand three-
second wind gusts up to 90 mph (144.8 kmh).

3.8.2 Union Pacific and BNSF Standards

Rail companies, such as Union Pacific and BNSF, require certain guidelines when
parapet-mounted fencing is used above railway overpasses in lowa. They require that on
sidewalk or trail facilities that the top of the fence should be curved to discourage
climbing over the fence. The standards also note that when BSNF and Union Pacific ask
for parapet-mounted fences, the lowa DOT generally proposes that the fence be omitted

in lieu of a 44-in. (1,118 -mm) tall concrete barrier [29].
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4 DESIGN AND ANALYSIS - DEBRIS FENCE

4.1 Overview
This chapter focuses primarily on the vertical posts in the debris fence. The lowa
DOT debris fence was to include the design of six main components:
e Bridge rail / parapet
e Vertical posts
e Post-to-rail attachments
e Horizontal fence stiffeners (frame)
e Chain link mesh
e Chain link attachments to posts and horizontal stiffeners
Due to limitations on time, this thesis was focused on the selection of the parapet
and vertical posts. Additional recommendations were provided for the other members,
but the sizing, selection, and design of those components were delegated for future
analysis.
4.2 Debris Fence Design Objectives
State DOT standards were summarized, and an internal ranking system was
applied based on debris fence safety, constructability, and cost. The use of standardized
components was also prioritized. Based on this review, the preferred configurations were
the Florida DOT design, which utilized vertical round posts and two saddle brackets to
the back side of the parapet, and the Texas DOT design, which utilized a single saddle
bracket and a lower through bolt which passed through the post into the back side of the

parapet.
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lowa DOT was shown the results of the literature review and state DOT

standards. The following attributes of the debris fence were prioritized based on that
meeting:

e Asingle, standard parapet shape would be selected for the debris fence
installation. Adaptations to other bridge rail or parapet shapes would be
considered at a future time.

e Posts were to be placed on the back side of the parapet to reduce
engagement within the impacting vehicle’s ZOI.

e Two saddle clamps were recommended, which would fasten the post to
the back side of the parapet.

e No structurally-stiff horizontal stiffeners would be placed within
passenger vehicle ZOl.

e Post-to-rail attachments (specifically, bolted attachments) should not
experience damage, result in concrete cracking, or require replacement
during a design impact scenario.

Post sizing and spacing for the debris fence were determined based on a structural
analysis. Using the maximum flexural and shear capacity of the selected post size, the
clamp spacing was selected to allow the posts to yield backward during an impact
scenario. Based on additional discussion, the lowa DOT stated that they would prefer to
limit the amount of horizontal members in the design. This justification was based on
their concern that the connection points between the horizontal members could fail during
an impact and spear into an impacting vehicle. Because these horizontal members add to

the overall aesthetics of the fence, the lowa DOT stated that they wished to retain one
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member at the top of the fence. To make up for the lack of horizontal stiffness, the lowa

DOT stated their preference to use longitudinal tension wires. These wires offer an added
benefit of limiting large pieces of the debris fence from falling off the parapet during an
impact event. When the debris fence experiences a vehicular impact, it is very important
to limit the damage of the anchor rods, which will guarantee that they do not have to be
replaced. Thus, the capacity of the vertical posts must be limited to allow them to fail far
before the anchor connections. The design and analysis are explained in further detail in
the following sections.
4.3 Parapet Selection

Recently, MWRSF crash tested an optimized bridge railing under MASH TL-4
conditions for the Midwest Pooled Fund Program. The final report of this research has
not been completed, but this test has been deemed successful under the MASH TL-4
criteria. The lowa DOT has specified that this barrier will be their new standard
configuration under TL-4 impact conditions, and they have requested that the selected
debris fence prototype be used in conjunction with this TL-4 optimized bridge railing.

The railing, as shown in Figures 53 and 54, consists of a single-slope, half-
section, reinforced concrete parapet and stands 36-in. (914-mm) tall after placement of a
3-in. (76-mm) overlay. The base of the barrier measures 10 in. (254 mm) in width and
tapers up to a minimum of 8 in. (203 mm) at the top of the structure. The railing consists
of multiple longitudinal and vertical pieces of rebar with the top two longitudinal bars
being 4 in. (102 mm) and 5% in. (133 mm) below the top of the railing. A design
variation incorporating head ejection criteria is compared to the crash-tested design in

Figure 55, which has the second piece of longitudinal rebar 6.62 in. (168 mm) below the
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top of the barrier. Thus, any connections to the backside of the bridge railing should be at

a minimum of 7% in. (197 mm) below the top of the railing to prevent any chance of the

rebar being struck when holes are drilled into the parapet for the placement of anchors.



89

f——+87203)
e
r “._“ m 8—#4 [13] Bor
Ma _W.Eﬁuww_lx “_._ H s [13] Bars
N
36"(914] i w —
T ar
i d ¢ @ 12" [305)
#4 [13] Bors .“__ m_\
© 12" [305] 0o
" 5 [16] B “..w o” b
BIE
\/ /////////////////////
mx_ijO\ nu%unuuunu.um.nnunumﬂ.w\wm\ = “ = Hunnmnnnnunulnu...du!l.uHVMnuuyununnnnnnnﬂununnnnunnnw..unnnw__v..//.z. m.—w—ou_
TARMAC —— wllwlnnnn\u\w\nlu\..)hsnﬂnnllu 1nnnwnnnﬂnnnnunm.xnnnnnuuunﬂmuunnnnnnnn|HunuHuunnnnh.lnnnlfnnnnnnmnnu..&mm& —
| L R R N 3] B
= 0| A i N 131 o
; an_ i 60"[1524]
4| b
w Tww”uuuuuunuuuuuuﬂuuwﬂ
A i i i //
A R
i \\
SECTION C-C
TL—4 Bridge Rail e
Test No. 4CBR-1 e
3/1/2018
Midwest Roadside| >°*" °**"® v
Safety Facility [™ ™= il ey
Al ge_Rail _R& JUNITS: in{mm]) .“.M 'JD/RKF

Figure 53. TL-4 Bridge Rail



90

8"[203]—f

3/4"x3/4"[19x19]
Chamfer

— T
4"1102)

1
/’

-

3

T T ——

8 3/4 MWNN_

7 1/2"190] &) (v

3

e g e e e e e e e

&)
] 39"991)

1S
I~
e e

T
m
i 8 3/4"222]
A 4
C—— =
H 5 2 1/27[64]
! H CLR (TYP)
107254]—} | !
2 4"(102] N "
LA Cst 1/4"(83]
= [SHEET
TL—4 m_‘mQOO Rail 11 of I8
PROFILE VIEW Test No. 4CBR—1 e
3/7/2018
Notes: (1) Reinforcement bar no. b11 is to be anchored into the existing tarmac with e
chemical epoxy adhesive with a min. bond strength of 1,450 psi [10.0 MPa]. i : Bridge Rail Assembly ..;“.T :
(2) The epoxy anchoring of bor no. b11 into the tarmac and rebar spacing is Midwest WOQQM.QQF
for testing purposes only and does not reflect the recommended barrier mommﬁK _HQOES\ DG NANE. ARS8 PR
installation. TLA_Bricge_Rail_RS UNTS: i [mm] .‘_m.mﬁ,_c\uxn

Figure 54. TL-4 Bridge Rail Rebar Placement



91

Figure 55. Comparison of TL-4 Barriers

4.4 Loading Conditions

The components in this debris fence can potentially be subjected to a total of five

different loading conditions as shown:

1.

2.

A lateral load during a vehicular impact;

A longitudinal load during a vehicular impact;

A wind load on the front of the fence;

A wind load on the back of the fence and;

A dead load from the weight of the fence material, which will always be

present.

During any of these loading conditions, it is paramount that the anchor

connections in the back of the parapet are maintained and are not subjected to forces that

could cause them to fail. This decision is based on the difficulty and expense with drilling
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the holes and replacing the anchors. Thus, it is preferred that the vertical posts and saddle

brackets fail before the anchorage connections. The following sections will
mathematically detail each of the loading conditions.

4.4.1 Lateral Impact Loading

A lateral vehicular impact into the debris fence will place a load onto the vertical
posts and chain-link, which will then be transferred through the posts and into the saddle
clamps and anchor connections as a tensile load. In this loading scenario, the largest
tensile load will be transferred into the top brackets and anchor connections. The tensile
load within the lower bracket will be negligible. Thus, the contribution of the lower
bracket was not involved with this mathematical derivation to represent a worst case
scenario. A diagram showing the lateral loading is shown in Figure 56, a definition of the
variables is shown in Table 5, and the full mathematical derivation is given in Appendix

A
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Figure 56. Lateral Impact Loading Configuration

Table 5. Lateral Impact Loading Variables

Variable

Definition

Fi

Impact Force

Fa

Tensile Force at Top Clamp

Fr

Reaction Force at Bottom of Post

Li

Distance Between Impact and Top of Parapet

La

Distance Between Top Clamp and Top of Parapet

Lr

Distance Between Bottom of Post and Top of Parapet
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A static force balance and moment sum at points i, a, and r of the lateral impact

yields the following equations:

ZFx=O=—Fi+Fa—Fr 1)

D M =0=F(li+ L) = F(L, +1) @
D My =0 = Fi(li + L) = Fo(ly — L) ©
> My = 0= Bl + L) = (L, — L) @
et

r = F‘Eg‘::;‘ ) ")

Next, the shear and moment diagrams can be obtained and are shown in Figure

S7.
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Figure 57. Shear and Moment Diagrams for Lateral Impact

The shear diagram shows that the maximum force occurs at the top clamp during
a lateral impact. The moment diagram shows that the maximum moment during a lateral
impact occurs at the top clamp, which can be stated mathematically with the following
equations:
My =Fi(Lg+ L) 8

My = F(Ly — Lg) (9)

4.4.2 Longitudinal Impact Loading
A longitudinal vehicular impact into the debris fence will place a load onto the

vertical posts and chain-link, which will then be transferred through the posts and into the
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saddle clamps and anchor connections as a shear load. A diagram showing the

longitudinal loading is shown in Figure 58, a definition of the variables is shown in Table

6, and the full mathematical derivation is given in Appendix B.

I

Figure 58 Longitudinal Impact Loading Configuration

Table 6. Longitudinal Impact Loading Variables

Variable Definition
Fi Impact Force
Fa Shear Force at Top Clamp
Fb Shear Force at Bottom Clamp
Li Distance Between Impact and Top of Parapet
La Distance Between Top Clamp and Top of Parapet
Lb Distance Between Bottom Clamp and Top of Parapet
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A static force balance and moment sum at points i, a, and b of the longitudinal

impact yields the following equations:

ZFx=0=—Fi+Fa—Fb (10)
D M= 0=Fy(Li+Lg) = Fy(Ly + L) (11)
Z M, =0 = F,(L; + Lg) — Fy(Ly — Lo) (12)
Z My =0 = F,(L; + Ly) — Fo(Ly — Lg) (13)

Through substitution and solving these equations, the forces at i, a, and b can be

determined:
Y (14)
-2
SR Einl (1)

Next, the shear and moment diagrams can be obtained and are shown in Figure

59.
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Figure 59. Shear and Moment Diagrams for Longitudinal Impact

The shear diagram shows that the maximum force occurs at the top clamp during
a lateral impact. The moment diagram shows that the maximum moment during a
longitudinal impact occurs at the top clamp. This can be stated mathematically with the
following equations:
Mg =F(Lg+ L) 17)
Mg = Fy(Lp — Lg) (18)
4.4.3 Front Wind Loading
Lateral wind blowing onto the front side of the fence structure will place a load
onto the vertical posts and chain-link mesh, which will then be transferred through the
posts and into the saddle clamps and anchor connections as a tensile load. In this loading

scenario, the largest tensile load will be transferred into the top brackets and anchor
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connections. Thus, the lower bracket did not represent a worst-case design scenario. A

diagram showing the front wind loading scenario and its corresponding shear and
moment diagrams are shown in Figure 60, a definition of the variables is shown in Table

7, and the full mathematical derivation is given in Appendix C.

A Lw
' -Fw(La+Lw)
-Fw

!
Fr ( Fr Mr

\ \Fr(Lr-La)

Figure 60. Front Wind Loading Configuration
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Table 7. Front Wind Loading Variables

Variable Definition
fw Wind Load Per Unit Length
Fw Total Effective Wind Load
Fa Tensile Force at Top Clamp
Fr Reaction Force at Bottom of Parapet
Hw Chain-Link Height
Lw Distance Between Center of Wind Load and Top of Parapet
La Distance Between Top Clamp and Top of Parapet
Lr Distance Between Bottom of Post and Top of Parapet

To simplify this situation, the total effective wind load can be transferred to a
point load at its centroid. A diagram showing this scenario and its corresponding shear
and moment diagrams are shown in Figure 61. Note that this simplified loading condition

is similar to the later and longitudinal impact loading scenarios.

\Y + M +
y
X -Fi
w Fw Mw
4 Lw
+-Fw(La+Lw)
# Fa 4 Ma
Lr Fa|Y
r Fr ( Fr Mr

\Fr(Lr-La)

Figure 61. Simplified Loading Configuration
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Note, that the forces and moments obtained through the simplified model are

equivalent to the actual configuration and only differ in the look of the shear and moment
diagram. A static force balance and moment sum at points w, a, and r, of the front wind

loading simplified scenario yields the following equations:

ZFx=O=—FW+Fa—Fr (19)
D My =0=Fylly + L) = By + L) (20)
D My =0= (L + Lo) = Bl — Lo) 1)
Z M, =0 = Ey(Ly + L) — Fy(L» — Lg) (22)

Through substitution and solving these equations the forces at a, and r can be

determined:
_ Ey(Ly+Ly)
@ (Lr - La) (23)
= — 24
(Lr - La) ( )

The shear diagram shows that the maximum force occurs at the top clamp during
a front wind loading scenario. The moment diagram shows that the maximum moment
during a front wind loading scenario occurs at the top clamp. This can be stated
mathematically with the following equations:
M, =FE,(L,+ L) (25)

M, = F.(Ly — Lg) (26)
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4.4.4 Back Wind loading

Lateral wind blowing onto the back side of the fence structure will place a load
onto the vertical posts and chain-link mesh, which will then be transferred through the
posts and into the saddle clamps and anchor connections as a tensile load. In this loading
scenario, the largest tensile load will be transferred into the bottom clamp and anchor
connections. In this derivation the tensile force at the top clamp and anchor connections
were neglected. A diagram showing the back wind loading is shown in Figure 62, a
definition of the variables is shown in Table 8, and the full mathematical derivation is

given in Appendix D.

Fw(Lw)

g AL > Fw Mr

Fr

FoN| [

L0 Fb Mb
\-FD(LD)

Figure 62 Back Wind Loading Configuration



Table 8. Back Wind Loading Variables
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Variable Definition
fw Wind Load Per Unit Length
Fw Total Effective Wind Load
Fb Tensile Force at Bottom Clamp
Fr Reaction Force at Top of Parapet
Hw Chain-Link Height
Lw Distance Between Center of Wind Load and Top of Parapet
Lb Distance Between Bottom Clamp and Top of Parapet

To simplify this situation the total effective wind load can be transferred to a point

load at its centroid. A diagram showing this scenario and its corresponding shear and

moment diagrams are shown in Figure 63.

- V + - M +
y
X
Fw w Mw
Fw(Lw)
Lw 2
r Fr
Mr
Lb Fr
Fb
| b \ Mb
g -Fb(Lb)

Figure 63. Simplified Back Wind Loading
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Note, that the forces and moments obtained through the simplified model are

equivalent to the actual configuration and only differ in the look of the shear and moment
diagram. A static force balance and moment sum at points w, r, and b of the back wind

scenario yields the following equations:

ZFx=O=FW+Fb—Fr @27)
Z M, =0 =—FL, + Fy(L, + L) (28)
Z M, =0 =—F,L, +FyL, (29)
Z My =0=—F,(L, + L) + E.L, (30)

Through substitution and solving these equations the forces at r, and b can be

determined:
E,(L, +L
F;' — w( w b) (31)
Lb
E, L
F, = 2% (32)
Lb

The shear diagram shows that the maximum force occurs at the top of the parapet
during a back wind loading scenario. The moment diagram shows that the maximum
moment during a back wind loading scenario occurs at the top of the parapet. This can be
stated mathematically with the following equations:

M, =E,L, (33)

MT‘ = FbLb (34)
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4.45 Dead Load

The weight of the fence components will result in a vertical dead load, which is
equivalent to the sum of all components within one section of the fence. A diagram
showing the dead load configuration is shown in Figure 64, a definition of the variables is

shown in Table 9, and the full mathematical derivation is given in Appendix E.

| w

I,

Fr

Figure 64. Dead Load Configuration
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Table 9. Variable Definitions

Variable Definition
wW Weight of Dead Load
Fr Reaction Force due to Dead Load
ZFy=o=—w+1~; (35)
W =E

(36)

Additionally, it is recommended that a load factor of 1.2 be used to determine the
applied dead load for the design [30].

W=12xEF, (37)

4.5 Post Selection Based on Wind Load
The Chain Link Fence Manufacturers Institute published information regarding

the selection of line posts and line post spacing in wind and snow prone areas [31]. The
guidelines are detailed in the Chain Link Fence Wind Load Guide for the Selection of
Line Post and Line Post Spacing and were derived from ASCE 7-10 standards and
guidelines [32]. This informational guide can be used to select the correct post spacing
for chain-link fence structures based off of anticipated wind gusts and icing effects,
vertical post diameter, chain-link mesh size and diameter, and fence height. Additionally,
these guidelines were formulated under the following assumptions:

1. Wind is acting in a direction normal to the face of the fence fabric and applied on

the fabric side of the line post.
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2. Line posts are considered to be embedded into the ground surface in accordance

with the minimum size and depth established according to the 2009 International
Building Code and ASTM F567.

3. All posts are Schedule 40 Pipe and considered to be embedded in air-entrained
concrete with a minimum 2,500 psi compressive strength to a depth consistent
with local soil types and conditions.

It was assumed that the structural capacity of the clamping mechanisms to the
backside of the parapet would offer the same strength as the concrete foundation. Under
these assumptions, the following equation was formulated to determine the maximum
recommended spacing of vertical posts in a chain-link fence structure.

S" = hC,C,Cs (38)
Where: S’ = Post Spacing (ft)
h = Coefficient Based on Fence Height and Post Diameter
C, = Coefficient Based on Mesh and Fabric Size
C, = Coefficient Based on Wind Exposure
C5 = Coefficient Based on Ice Exposure
Note that the Chain Link Fence Manufactures Institute recommends a post
spacing equal to S’ or 10 ft (3.0 m).
4.5.1 lowa Wind Spacing and Sizing Requirements
Current lowa DOT requirements dictate the following:

1. Any item placed along the roadway must be able to withstand wind gusts up to 90
mph (149 kph).

2. Standards say that the wire height of the structure must be at least 6 ft (1.8 m) tall.

3. The mesh gap size must be at least 2 in. (51 mm) and should be composed of #9

gauge wire.
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4.5.2 Selection of Parameters and Pipe Sizing

Using these values in conjunction with the Chain Link Fence Wind Load Guide
for the Selection of Line Post and Line Post Spacing, the coefficient values were
determined and are shown below:

1. A, value of 7.26 was based off of a 2-in. (51-mm) gap size and #9 gauge wire;

2. A C,value of 0.55 was obtained for a wind coefficient value, because this design
will potentially be used in any type of environment; and

3. A (C; value of 0.45 was obtained, because it is very likely that the areas in lowa
where this fence will be used are likely to experience heavy ice storms.

The last coefficient, ‘h’, is a function of the fence height post diameter, post
material, and wind speed. lowa DOT specifies that the fence should be a minimum of 6 ft
(1.8m) tall and be designed to withstand 90 mph (145 kph) winds, but the lowest wind
value given in the guidelines is 105 mph (169 kph). Following the lowa DOT guidelines
given in Section 3.8.1 and selecting schedule 40 ASTM F1043 Regular Grade 30 ksi (207
MPa) yields the h values shown in Table 10.

Table 10. ‘h’> Values

Outside Diameter (in.) h
1.875 1.2
2.375 2.3
2.875 4.4
3.5 7.3
4 10.2

Based on the selection parameters, the post spacing is given by the following
equation:

" = h(7.26)(0.55)(0.45) (39)
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Using this information and differing post diameter, multiple post spacings were

determined and are shown in Table 11. Note that all of the coefficients were selected to
represent the worst-case environmental conditions [31].

Table 11. Calculated Vertical Post Spacing

Outside Diameter (in.) | Post Spacing (ft)
1.875 2.16
2.375 4,13
2.875 7.91
35 13.12
4 18.33

The guidelines recommend that the maximum spacing should be 10 ft (3 m), and
the data in Table 11 shows that this value is reached between a vertical post’s outside
diameter of 27% in. (73 mm) and 3%z in. (89 mm). Linear interpolation from this table
indicates that the post size will be optimized with an outside diameter of 3 in. (76 mm)
and a post spacing of 10 ft (3 m). However, a 3-in. (76-mm) outside diameter, schedule
40 pipe is not a standard size. Alternative options, which satisfy the wind loading
requirements, which include commonly-produced post sizes, such as 3% in. (89 mm)
posts spaced at 10 ft (3m) or 2% in. (73 mm) posts spaced at 8 ft (2.4 m).

When the proposed debris fence experiences a significant impact event, it is
preferred that the vertical posts plastically deform or fracture to reduce vehicle snag
concerns. Thus, the flexural and shear capacities of the post should be minimized to the
lowest acceptable value after satisfying the design criteria. Therefore, 27%-in. (73-mm)
outside diameter schedule 40 pipes spaced at 8 ft (2.4 m) centers were selected for the

post size and spacing, respectively.
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4.6 Minimum Design for Wind Loading

The ASCE published information regarding the typical wind loads that buildings
and other structures experience based off of expected maximum wind velocities and
geographical placement of the structure. These guidelines are detailed in ASCE 7-10
Minimum Design Loads for Buildings and Other Structures [32] and were followed to
determine maximum wind loading on a fence using a 2-in. (51-mm) mesh spacing and 6
through 11 gauge wire. The equation for calculating the maximum expected wind loads is
shown below. Note, ASCE 7-10 introduced wind speed maps that are to be used with a
load factor equal to 1.0 for Load and Resistance Factor Design (LRFD).

F = q,ACp (40)
Where: F = Maximum Wind load, (N)
q= Maximum Dynamic Pressure, (Pa)
A = Projected Area, (m?)
Cp = Drag Coefficient

4.6.1 Dynamic Pressure

The first step was to determine the maximum overall dynamic pressure imparted
to the fence structure. The equation for this pressure calculation is shown below and is
given in Section 27.3.2 of the ASCE guidelines. Using this equation and a maximum
expected wind speed of 115 mph (185 kph), which is shown in the guidelines, and results
in a conservative design force compared to a 90 mph (145 kph) wind speed given by the
lowa DOT. The maximum dynamic pressure experienced by the debris fence structure
was calculated to be 0.22 psi (1,501 Pa).

q; = 0.613K,K,rK,V? (41)

Where: q, = Maximum Dynamic Pressure, (Pa)
K= Velocity Pressure Exposure Coefficient, 1.09
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K, = Topographic Factor, 1
K}, = Wind Directionality Factor, 0.85
V = Maximum Expected Wind Velocity, (m/s), 51.4 m/s
4.6.2 Projected Area
Next, the surface area exposed to the pressure can be determined. Current lowa
guidelines state that the chain-link fence should be at least 6 ft (1.8 m) tall, have a 2-in.
(51-mm) mesh gap size, and the calculations given by the Chain Link Fence
Manufacturers depict a maximum post spacing of 8 ft (2.4 m). The exposed areas
subjected to the wind over each 2-in. (51-mm) gap mesh size fora6 ft x 8 ft (1.8 m x 2.4
m) section of the fence for 6 through 11 gauge wires are shown in Table 12. The

mathematical details for this calculation are given in Appendix F.

Table 12. Chain-Link Area Exposed to Wind

. Chain Link Area Exposed to Wind
Wire Gauge - 3 - 3
2 in. Mesh (ft") 2 in. Mesh (m”)
6 gauge 14.39 1.34
7 gauge 12.92 1.20
8 gauge 11.59 1.08
9 gauge 10.39 0.97
10 gauge 9.31 0.86
11 gauge 8.33 0.77

4.6.3 Drag Coefficient

The drag coefficient seen in Equation (40) is a function of fluid density, viscosity,
speed, as well as object geometry. These values along with experimentally-determined
results can be used to determine the drag coefficient.

The Reynolds Number is used to estimate the drag coefficient and can be
calculated using Equation (42). The density and dynamic viscosity of air at 80 F (26.7 C)

were used, and the characteristic length scale was the diameter of the chain-link mesh.
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These calculated Reynolds Numbers can then be used in conjunction with the graph

shown in Figure 65 to determine the drag coefficient. It is difficult to obtain accurate drag
coefficients when using a logarithmic plot, but tabulated values are not readily accessible.
Table 13 shows the calculated Reynolds numbers and drag coefficients for 6 through 11

gauge chain-link fabric.

pVL
Re = T (42)
Where: R, = Reynolds Number

p = Fluid Density (kg/m®)

V' = Fluid Velocity (m/s)

L = Characteristic Length Scale (m)
u = Dynamic Viscosity (Pa-s)

10?
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Re

Figure 65. Drag Coefficient vs Reynolds Number for Cylinders [33]



Table 13. Calculated Reynolds Numbers and Drag Coefficients

. Wind Loads
Wire Gauge -
2 in. Mesh (Ibf) | 2 in. Mesh (N)

6 gauge 271 1,204
7 gauge 284 1,261
8 gauge 291 1,293
9 gauge 293 1,304
10 gauge 292 1,298
11 gauge 287 1,278

4.6.4 Maximum Wind Loading

After the dynamic pressure change, projected area, and drag coefficients were

determined, the maximum wind loading was calculated using Equation (40). These

113

results are shown in Table 14. Generally, it would be expected that the drag forces would

increase as the projected area increased. Thus, the larger gauge wire should experience

larger drag forces, but the results displayed below do not agree with this assumption. All

of the calculated Reynolds Numbers fall between 290,000 and 540,000, and these values

are actually located in a transition zone that experiences a rapid decrease in the measured

drag coefficient. This reduction in the drag coefficient leads to very similar drag values as

the diameter of the wire is increased from 11 to 6 gauge.

Table 14. Maximum Expected Wind Loads

Wind Loads
Wire Gauge | 2in. Mesh (Ibf) | 2 in. Mesh (N)
6 gauge 271 1,204
7 gauge 284 1,261
8 gauge 291 1,293
9 gauge 293 1,304
10 gauge 292 1,298
11 gauge 287 1,278




114
Following the lowa DOT guidelines, 9-gauge wire was used in the design of this

debris fence system. This results in a maximum force of 293 Ibf (1,304 N). This
maximum force was used to confirm the structural integrity of the fence design subjected
to wind loading.
4.7 Design of Members for Flexure

Chapter F of the AISC Steel Construction Manual [34] was consulted to determine
the maximum allowable flexural capacity to design vertical posts that will yield during an
impact. Sections F1, General Provisions, and F8, Round HSS, are of particular interest in
the design of a parapet-mounted debris containment fence. lowa currently uses circular
pipes in the protection fence shown in Figure 11. To limit the cost and use of nonstandard
members, round pipe was selected for the proposed debris fence.

To determine the nominal plastic flexural strength, Equation (43) was utilized.

¢pM, = ¢,F,Z (AISC F8 — 1) (43)
Where: ¢, Mn = Design Flexural Strength (kip-in.)
Fy = Specified Minimum Yield Stress (ksi)
Z = Plastic section modulus (in.%)
» = 0.9, Resistance Factor for Flexure

Section F7 of the AISC Steel Construction Manual lists the steps to determine the
plastic nominal flexural strength of a steel member. Following the lowa DOT guidelines,
shown in Section 3.8.1, ASTM F1083 regular grade schedule 40 piping, containing a
specified yield stress of 30 ksi (207 MPa), was selected as the vertical posts used in the
debris fence [35]. Plastic section modulus values were obtained from Part 1 of the Steel

Manual. Next, Equation (43) was used to calculate the nominal plastic flexural strength
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for schedule 40 pipes containing outside pipe diameters ranging from 1.66 in. (42 mm) to

3% in. (89 mm). These values are shown below in Table 15.

Table 15. Nominal Plastic Flexural Strength

size NPS | Pipe OD (in.) Plastic Sec.tiosn Nominal Plastif: F!exural
Modulus (in.”) Strength (kip-in.)
1.25 1.66 0.305 8.24
1.5 1.9 0.421 11.37
2 2.375 0.713 19.25
2.5 2.875 1.37 36.99
3 3.5 2.19 59.13

To minimize bending strength and maximize efficiency of the design by, a 2%-in.

(64-mm) schedule 40 NPS pipe with a nominal flexural strength of 36.99 kip-in (4.18

kN-m) was recommended.

4.8 Design of Members for Shear

Chapter G of the AISC Steel Construction Manual [34] was consulted to

determine the maximum shear capacity of the vertical posts. As with the plastic bending

stress, the vertical posts were assumed to be circular pipe sections, and the shear strength

of the posts was calculated to determine if impact loads were likely to cause posts to

shear off. To determine the shear capacity, Equation (44) can be utilized.

bV

Where:

Using the post sizing guidelines obtained from the wind spacing and sizing

_ P4y
2

(AISC G5 — 1)

Vh = Design Shear Strength (Kips)

Fy = Specified Minimum Yield Stress (ksi)
Aq = Gross Cross-Sectional Area (in.?)

¢, = 0.9, Resistance Factor for Shear

(44)

requirements, a gross cross-sectional area value of 1.59 in?, as shown in Part | of the Steel
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Manual, and ASTM F1083 regular grade schedule 40 piping with a specified minimum

yield stress of 30 ksi (345 MPa), the design shear strength of the 2%-in. (64-mm) NPS
pipe was calculated as 21.47 kips (95.5kN).
4.9 Verification of Design for Wind Loading

In order to determine that the flexure and shear values experienced by the pipe
during maximum wind loading scenarios are below the calculated flexural and shear
capacity of the pipe, the following assumptions were made:

1. The maximum wind load is 293 Ibf (1,304 N), as shown in Section 4.6.4;

2. The top clamp will be located 8 in. (203 mm) below the top of the parapet;

3. The bottom clamp will be located 14 in. (356 mm) below the top of the
parapet and;

4. The chain-link mesh height will be 6 ft (1.8 m), as shown in Section 3.8.1,
and the wind load will act as a point load 36 in. (914 mm) above the
parapet.

4.9.1 Front Wind Loading

Using the simplified model of the front wind loading scenario shown in Figure 66
and Equations (45) through (47), the flexural and shear capacity of the pipe can be
compared against obtained values due to wind loading. These results are shown in Table

16.
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Figure 66. Front Wind Loading Simplified Configuration
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Table 16. Front Wind Loading Results

Fw (kips)

Fa (kips)

Fr (kips)

Ma (kip-in.)

0.293

2.44

2.15

12.89

The maximum flexural value of 12.89 kip-in. (1.46 kN-m), in a front wind
loading scenario, occurs at the top bracket and is lower than the maximum flexural

capacity of the pipe, given in Section 4.7 as 36.99 kip-in (4.18 kN-m).
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(45)

(46)

(47)
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The maximum shear value of 2.44 kips (10.9 kN), in a front wind loading

scenario occurs at the top bracket and is lower than the maximum shear capacity of the
pipe, given in Section 4.8 as 21.47 kips (95.5kN).

Thus, it is expected that the fence will not yield during frontal wind loading
scenarios.

4.9.2 Back Wind Loading

Using the simplified model of the back wind loading scenario shown in Figure 67
and Equations (48) through (50) the flexural and shear capacity of the pipe can be

compared against obtained values due to wind loading. These results are shown in Table

17.
- V + - M +
y
X
FW N W Mw
Fw(Lw)
Lw 4
r Fr
Mr
Lb Fr
i | b | \ Mb
i \-Fb(Lb)

Figure 67. Back Wind Loading Simplified Configuration
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E, (L, + L
- ( b) 48)
Ly
FyLy
F, = L, (49)
M, =F,L, (50)

Table 17. Back Wind Loading Results

Fw (kips) | Fr (kips) | Fb (kips) | Mr (kip-in.)
0.293 1.05 0.753 10.55

The maximum flexural value of 10.55 kip-in. (1.19 kN-m), in a back wind loading
scenario, occurs at the top of the parapet and is lower than the maximum flexural capacity
of the pipe, given in Section 4.7 as 36.99 kip-in (4.18 kN-m).

The maximum shear value of 1.05 kips (10.9 kN), in a back wind loading
scenario, occurs at the top of the parapet and is lower than the maximum shear capacity
of the pipe, given in Section 4.8 as 21.47 kips (95.5kN).

Thus, it is expected that the fence will not yield during back wind loading
scenarios.

4.10 Estimation of Impact Force to Yield Posts

As stated previously it is preferred that the posts within this debris fence yield
backwards during an impact to limit the potential snag between the fence and impacting
vehicle. Note that the impact force will be the same for both the lateral and longitudinal
loading scenarios. Thus, only the lateral impact scenario was analyzed, this loading
configuration is shown in Figure 68. The force at point i, a, and r can be estimated using

Equations (51) through (53) and the following assumptions:
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1. The maximum moment in the system will be located at the top clamp and

is equal to the flexural capacity of the pipe;
2. The top clamp will be located 8 in. (203 mm) below the top of the parapet;
3. The bottom clamp will be located 14 in. below the top of the parapet and,;

4. The impact will occur 3 in. (76 mm) above the top of the parapet.

- V + - M +
y
X
a ) Fi —Li -Fi Mi
i
L -Fi(La+Li) !
L Fa 5 Ma
Lr FalY
r Fr / Fr Mr

\Fr(Lr-La)

Figure 68. Lateral Impact Loading Configuration

My = Fi(Lqg + L) (51)
_F(Li+ L)

T (Lr - La) (52)
R+ L)

. (Li + La) (53)



Table 18. Resulting Forces

Fi (kips)

Fa (kips)

Fr (kips)

3.36

9.53

6.17

An impact force of 3.36 kips (15.0 kN) is needed to yield the post backwards

during an impact, as shown in Table 18.
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5 ADDITIONAL PRELIMINARY DEBRIS FENCE COMPONENT DESIGNS

5.1 Overview

The following information are current best estimates for components that will be
revisited and revised in future studies. These design and selections are potential options
that may be selected at a future date.

5.2 Longitudinal Stiffeners

As shown in the literature review of this report, states commonly use small
diameter pipes or tension wires as longitudinal members in their parapet mounted debris
fences. These members help to maintain the chain-link in high wind situations and can be
connected using wire ties to lessen sagging of the chain-link between vertical posts.
MwRSF researchers believed that using tension wires may result in less vehicle damage
during an impact. The critical failure points of these tubes within the ZOl are at
connection points between the tubes, where rail ends could disengage and spear an
impacting vehicle. Therefore, tension wires are preferred for stiffening the lower portion
of the fence.

The fence design currently used by Florida, as shown in Figures 6 through 8, only
uses tension wires which most likely are used to eliminate vehicle snag on longitudinal
posts and mesh within the ZOI. However, using tension wires without a fence frame
could reduce the aesthetics of the system. High wind loading environments may cause the
fence to sway, and tolerances in the fence construction may cause the top of the fence to
wander or appear irregular, which decreases the overall aesthetic quality. A frame on the
top of the fence may fix or hide fence irregularities and provide a “clean” appearance for

the system, without compromising safety. Therefore, lowa DOT decided to pursue a
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fence design incorporating a top structural member to frame the fence, and two

intermediate tension wires, similar to the Texas design, as shown in Figure 27.

The use of tension wires offers an added benefit of limiting fence debris from
falling onto the tracks below during an impact event. It is imperative that large pieces of
the structure do not break off and fall onto the track during a vehicular impact. Another
method for limiting this debris may be to use the idea presented in Section 3.3. To retain
any debris on the bridge after an impact, an additional wire could be installed in the upper
frame.

The upper frame can be designed in multiple ways, but it is very important that
installers have access to the tension wire in case it needs replaced. A potential option is
shown below in Figures 69 and 70. This design consists of two main components. The
first is a circular section of pipe with a piece of angle iron welded to the top. This pipe
would be placed directly into the vertical posts after their instillation and will be secured
with one bolt. The second piece is the longitudinal member, which would be placed on
top of the angle iron and secured with two bolts. This longitudinal member would allow
both the top of the chain link fence and a tension cable to be placed within. These would

then be secured along the member with bolts.
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Figure 69. Potential Top Rail Isometric Back View

Figure 70. Potential Top Rail Side View
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Note, this is not the proposed design to be used within the parapet fence but one

potential option.
5.3 Clamp Spacing and Design

To limit vertical sagging of the fence a bolt can be placed horizontally through the
saddle clamp and will need to be able to withstand anticipated dead loads. This is similar
to what Florida currently uses, as shown in Figure 8. One such potential design is shown

in Figure 71.

Figure 71. Potential Saddle Clamp Design

Note, this is not the proposed design to be used within the parapet fence but one

potential option.
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Part |

6 SUMMARY CONCLUSIONS AND RECOMMENDATIONS

Part | of this thesis detailed the results of a literature review and the initial design
and analysis of vertical posts used with a debris fence system. Five different loading
scenarios were investigated. Using these loading scenarios, and lowa DOT criteria post
sizing and spacing requirements were determined to be able to withstand expected wind
loads.

The literature review, conducted for the lowa DOT, resulted in obtaining state
debris fence designs, previous real word crashes, crash tests related to debris fences, ZOI
information, debris fence examples in Lincoln, Nebraska, and lowa DOT design
standards.

Due to safety and constructability concerns the lowa DOT asked that the proposed
design include vertical posts mounted to the back of the bridge rail. This allows
additional offset from the barrier and reduces the chance that an impacting vehicle will
come into contact with the debris fence. Saddle clamps were chosen as the method of
attachment to the back of the parapet because they are commonly used by state DOTs and
because of a successful crash test, under AASHTO PL-2 conditions, of a similar system
by TTI.

Five different loading scenarios were investigated in this analysis and are as
follows:

1. A lateral load during a vehicular impact;
2. A longitudinal load during a vehicular impact;

3. A wind load on the front of the fence;
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4. A wind load on the back of the fence and;

5. A dead load from the weight of the fence material, which will always be
present.

Post sizing, spacing, and material requirements were selected to allow the vertical
posts and fence structure to be maintained during high wind loading events but yield out
of the way during vehicular impacts to decrease the likelihood of snagging between the
structure and impacting vehicle.

Typically, states use horizontal tubes within their debris fence designs to allow
longitudinal stiffness of the system and to limit the amount of sway during high wind
events, but there is a chance that impacting vehicles could cause these longitudinal
members to break apart at connection points and spear the vehicle. In an effort to prevent
this sort of vehicle and system interaction the lowa DOT requested that tension cables be
used within the design and the horizontal frame be limited to the top of the system. It is
expected that under MASH TL-3 conditions there will be little to no interaction between
the vehicle and the top of the debris fence.

It is recommended that additional work be complete in order to determine the
correct design of the horizontal rail, saddle clamps, and anchorage connections that will

be used in the design.
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PART II

7 INTRODUCTION — POST SOIL INTERACTION FORCES
7.1 Background

This Part 11 effort details the results and analysis of bogie tests. These tests were
conducted using steel tubes with varying cross-section geometries, embedment depths,
and two different soil types. These tests were conducted to evaluate the effectiveness of
the modified Midwest Guardrail System (MGS) in both strong and weak soils. Therefore,
both types of soil were utilized in the bogie testing program. The strong soil met
AASHTO standard soil designation M147 Grade B requirements. The weak soil met
AASHTO standard soil designation A3. Post-soil interaction forces and energy-
dissipation characteristics were compared for all tests. From these comparisons, the 96-in.
embedment depth was found to provide adequate impact properties in both strong and
weak soils.

This section of this thesis will summarize the results and analysis of a total of
seventeen dynamic bogie tests of a square, thin-walled tube impacted in both weak and
strong soils. During this testing series, post width and post embedment depth were
evaluated to determine the importance of these variables on the overall post-soil
interaction forces. A total of 23 tests were originally planned. However after the post
yielding occurred the actual test matrix was modified. Post yielding, instead of post
displacement within the soil, was observed for both strong and weak soil tests.

7.2 Research Objectives
The first objective was to determine how changes in post width, post embedment

depth, and soil type effect overall post-soil interaction forces. The second objective was
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to display this data in a meaningful and impactful way that would be beneficial in both

analytical and computational studies.
7.3 Scope

Nineteen bogie tests were conducted on different post geometries with various
embedment depths in both weak and strong soil types. During two of these tests, the posts
yielded; thus, only the data from seventeen of the tests was analyzed in detail. The target
impact speed for all tests was 25 mph (40.2 kph). The posts were impacted 25 in. (635
mm) above the ground line perpendicular to the front face of the post, which created a
classical “head-on” or full frontal impact with strong-axis bending. The bogie testing
matrix is shown in Figure 72. Material specifications, mill certifications, and certificates
of conformity for the posts are shown in Appendix G.

Two different types of soil were utilized in the tests. The first soil, a compacted
sand that met AASHTO standard soil designation A-3, was utilized for test nos. P3G-1
through P3G-6, P3G-13 through P3G-15, and P3G-22, through P3G-23. Sand was
utilized in the tests to represent the least desirable soil conditions that could be
encountered in the installation of an upgraded Midwest Guardrail System (MGS). The
second type of soil utilized in the remaining tests was a compacted, coarse, crushed
limestone material that met AASHTO standard soil designation M147 Grade B, which is
consistent with the strong soil required for compliance testing according to MASH 2016

[1]. Soil specifications are shown in Appendix G.



Table 19. Test Matrix
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Bogie Bogie Post Post Height
Approximate | Target | Embedment | Visible Above- .
est No. Post Type Weight Speed Depth Ground line Soil Type
Ib mph in. in.
P3G-1 87x6”x3/16” 1,876 25 48 36 Weak
P3G-2 87x6”x3/16” 1,876 25 48 36 Weak
P3G-3 87x6”x3/16” 1,876 25 72 36 Weak
P3G-4 87x87x3/16” 1,876 25 72 36 Weak
P3G-5 87x6”x3/16” 1,876 25 96 36 Weak
P3G-6 87x87x3/16” 1,876 25 96 36 Weak
P3G-7 87x6”x3/16” 1,876 25 48 36 Strong
P3G-8 87x87x3/16” 1,876 25 48 36 Strong
P3G-9 87x6”x3/16” 5,212 25 72 36 Strong
P3G-10* 1,876 25 72 36 Strong
P3G-11* 1,876 25 96 36 Strong
P3G-12* 1,876 25 96 36 Strong
P3G-13 87x4”x3/16” 1,876 25 78 32 Weak
P3G-14 87x4”x3/16” 1,876 25 90 32 Weak
P3G-15 87x4”x3/16” 1,876 25 102 32 Strong
P3G-16 87x4”x3/16” 1,876 25 40 32 Strong
P3G-17 8”x8"x3/8” 5,212 25 48 36 Strong
P3G-18 87x6”x3/8” 5,212 25 72 36 Strong
P3G-19 87x87x3/8” 5,005 25 72 36 Strong
P3G-20 87x67x3/8” 5,005 25 96 36 Strong
P3G-21* 5,005 25 96 36 Strong
P3G-22 87x4”x3/8” 1,876 25 90 32 Weak
P3G-23 87x4”x3/8” 1,876 30 102 32 Weak

* designates test was not run
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Test No. |Bogie Emmmowwmmmevv %zmmwmv omﬂwmﬁmmij‘w_ﬂi :ﬂommw:_.xsm”_mamﬁ _uAmeH Soil Type Additional Notes

P3G—1 3 1876 25 48 [1219] 36 [914] al Weak

P3G—2 3 1876 25 48 [1219] 36 [914] a2 Weak

P3G—3 3 1876 25 72 [1829] 36 [914] a3 Weak

P3G—4 3 1876 25 72 [1829] 36 [914] ak Weak

P3G-5 3 1876 25 96 [2438] 36 [914] a5 Weak

P3G—6 3 1876 25 96 [2438] 36 [914] a6 Weak

P3G—7 3 1876 25 48 [1219] 36 [914] al Strong

P3G—8 3 1876 25 48 [1219] 36 [914] a2 Strong

P3C—9 2 5212 25 72 [1829] 36 [914] a3 Strong

P3G-10 3 1876 25 72 [1829] 36 [914] a4 Strong Not conducted due to post yielding in test no. P3G-9
P3G-11 3 1876 25 96 [2438] 36 [914] a5 Strong Not conducted due to post yielding in test no. P3G—9
P3G—12 3 1876 25 96 [2438] 36 [914] a6 Strong Not conducted due to post yielding in test no. P3G—9
P36—13 | 3 1876 25 78 [1981] 32 [813] a7 Weak

P3G—-14 3 1876 25 90 [22886] 32 [813] a8 Weak

P3G—-15 3 1876 25 102 [2591] 32 [813] a9 Weak

P3G—16 | 3 1876 25 20 [10186] 32 [813] | a10 Strong

P3G—17 | 2 5212 25 48 [1219] 36 [914] b1 Strong

P3G—18 | 2 5212 25 72 [1829] 36 [914] b2 Strong

Psc19 | 2 | soos | 25 | 72[m29) | 35 (ow] | b3 | stong | Sgmeboge (no.2) os prevous tests but swiched impoct
P3G—20 | 2 5005 30 96 [2438] 36 [914] b4 Strong

P3G-21 3 1876 25 96 [2438] 36 [914] b5 Strong Not conducted due to post yielding in test no. P3G-20
P3G—22 | 3 1876 25 90 [2286] 32 [813] b6 Weak

P3G—-23 3 1876 30 102 [2591] 32 [813] b7 Weak
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Figure 72. Test Matrix, Test Nos. P3G-1 through P3G-23
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7.4 Equipment and Instrumentation

During the dynamic bogie tests, several types of equipment and instrumentation
were utilized to collect and record data, including a bogie vehicle, accelerometers, a
retroreflective speed trap, high-speed and standard-speed digital video, and still cameras.

7.4.1 Bogie Vehicles

Two rigid-frame bogies were used to impact the posts. A variable-height,
detachable impact head was used in all tests. The bogie head was constructed of 8-in.
(203-mm) diameter, ¥%2-in. (13-mm) thick standard steel pipe, with %-in. (19-mm)
neoprene belting wrapped around the pipe to prevent local damage to the post during the
impact event. The impact head was bolted to the bogie vehicle, creating a rigid frame
with an impact height of 25 in. (635 mm). Bogie no. 3, which was used with the impact
head in test nos. P3G-1 through P3G-8 and P3G-13 through P3G-16, is shown in Figure
79. Bogie no. 2, which was used with the impact head in test nos. P3G-9 and P3G-17
through P3G-23, is shown in Figure 80. For the first three tests utilizing bogie no. 2, test
nos. P3G-9, P3G-17, and P3G-18, the test weight of the bogie with the accelerometers
and mountable impact head was 5,212 Ib (2364 kg). The weight of the bogie no. 3 with
the addition of the mountable impact head and accelerometers was 1,876 Ib (851 kQ).
During test no. P3G-18, bogie no. 2 sustained damage to the impact head. Thus, for test
nos. P3G-21 through P3G-23, a different impact head was substituted, and the weight of

the bogie, accelerometers, and new impact head was 5,005 Ib (2,270 kg).
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Figure 79. Rigid-Frame Bogie No. 3 and Guidance Track

Figure 80. Rigid-Frame Bogie No. 2 and Guidance Track
7.4.2 Test Vehicle
A pickup truck with a reverse-cable, tow system was used to propel the bogie to

the respective target impact speed for each test. When the bogie approached the end of

the guidance system, it was released from the tow cable, allowing it to be free rolling
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when it impacted the post. A remote-controlled braking system was installed on the

bogie, thus allowing it to be brought safely to rest after the test.

7.4.3 Accelerometers

Two accelerometer systems were mounted on the bogie vehicle near its center of
gravity (c.g.) to measure the acceleration in the longitudinal, lateral, and vertical
directions. However, only the longitudinal acceleration data was processed and reported
herein.

The two systems, the SLICE-1 and SLICE-2 units, were modular data acquisition
systems manufactured by Diversified Technical Systems (DTS) of Seal Beach,
California. The acceleration sensors were mounted inside the bodies of custom-built
SLICE 6DX event data recorders and recorded data at 10,000 Hz to the onboard
microprocessor. Each SLICE 6DX was configured with 7 GB of non-volatile flash
memory, a range of £500 g’s, a sample rate of 10,000 Hz, and a 1,650 Hz (CFC 1000)
anti-aliasing filter. The “SLICEWare” computer software program and a customized
Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

7.4.4 Retroreflective Optic Speed Trap

The retroreflective optic speed trap was used to determine the speed of the bogie
vehicle before impact. Three retroreflective targets, spaced at approximately 18-in.
intervals, were applied to the side of the vehicle. When the emitted beam of light was
reflected by the targets and returned to the Emitter/Receiver, a signal was sent to the data
acquisition computer, recording at 10,000 Hz, as well as the external LED box activating
the LED flashes. The speed was then calculated using the spacing between the

retroreflective targets and the time between the signals. LED lights and high-speed digital
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video analysis are only used as a backup in the event that vehicle speeds cannot be

determined from the electronic data.

7.4.5 Digital Photography

One AOS high-speed digital video camera and two GoPro digital video cameras
were used to document all tests. The AOS high-speed camera had a frame rate of 500
frames per second and both GoPro video cameras had a frame rate of 240 frames per
second. The cameras were placed laterally from the post, with a view perpendicular to the
bogie’s direction of travel. A Nikon D5300 digital still camera was also used to document
pre- and post-test conditions for all tests.
7.5 End of Test Determination

When the impact head initially contacts the test article, the force exerted by the
surrogate test vehicle is approximately parallel to the bogie’s direction of travel.
However, as the post rotates, the surrogate test vehicle’s orientation changes with respect
to the impact face of the post. This introduces two sources of error: (1) the contact force
between the impact head and the post has a vertical component and (2) the impact head
slides upward along the test article. Therefore, only the initial portion of the
accelerometer trace should be used since variations in the data become significant as the
system rotates and the surrogate test vehicle overrides the system. Additionally,
guidelines were established to define the end of test time using the high-speed video of
the impact. The first occurrence of the surrogate vehicle overriding/losing contact with

the test article was used to determine the end of the test.
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7.6 Data Processing

The electronic accelerometer data obtained in dynamic testing was filtered using
the SAE Class 60 Butterworth filter conforming to the SAE J211/1 specifications [37].
The pertinent acceleration signal was extracted from the bulk of the data signals. The
processed acceleration data was then multiplied by the mass of the bogie to get the
impact force using Newton’s Second Law. Next, the acceleration trace was integrated to
find the change in velocity versus time. Initial velocity of the bogie, calculated from the
pressure tape switch data, was then used to determine the bogie velocity, and the
calculated velocity trace was integrated to find the bogie’s displacement. This
displacement is also the displacement of the post. Combining the previous results, a force
vs. deflection curve was plotted for each test. Finally, integration of the force vs.

deflection curve provided the energy vs. deflection curve for each test.
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8 EFFECT OF PARAMETER VARIATION ON POST-SOIL FORCES

8.1 Introduction and Motivation

Researchers compiled the results of the bogie testing and conducted a parametric
study to determine what trends, if any, could be identified based on the dynamic
component testing. Some of the parameters which were investigated included post width,
post embedment depth, and soil strength.

Univariate analysis was conducted based on similarities from test execution. For
example, during the post width comparison, data from tests with posts containing
different widths were compared at the same embedment depth and soil strength. Results
were plotted graphically and trends were identified, although additional research is
necessary to confirm the trend at extrapolated conditions.

8.2 Post Width

During this testing series, an attempt was made to quantify the effect that post
width has on the post-soil interaction forces by comparing the results of dynamic post
tests with different widths installed in similar soils and embedment depths. Posts with
widths of 6 in (152 mm) and 8 in. (203 mm) were tested at an embedment depths of 48
in. (1219 mm) and 72 in. (1829 mm) in strong and weak soils. These two post widths
were additionally tested at a 96-in (2,438 mm) embedment in weak soil. All tests that
experienced a post yield were neglected from this analysis in order to isolate the post-soil
response.

8.2.1 48-in. Embedment in Weak Soil

Tests P3G-1 (HSS 6-in. x 8-in. x 84-in. x 3/16-in.) and P3G-2 (HSS 8-in. x 8-in. x

84-in. x 3/16-in.) were conducted at an embedment depth of 48 in. (1,219 mm) in weak
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soil. Graphs of force vs. displacement and energy vs. displacement can be seen in Figures

81 and 82 The average force values for both widths at 5, 10, 15, and 20 in. (127, 254,

381, and 508 mm) of displacement are shown numerically in Table 20.

Table 20. P3G-1 and P3G-2 Average Force Comparison— 48-in. Embedment in Weak

Soil
@sin. | @10 | @15 1 @20
in. in. in.
P3G-1 Average Force (Kip)
6 in. x 8 in. X 84 in. long by 3/16 in. thick tube 12.80 7.96 6.43 5.66
P3G-2 Average Force (Kip)
8in.x8in. x 84 in. long by 3/16 in. thick tube 1362 8.72 6.89 6.05
Percent Difference 6.4% 9.6% 7.3% 6.8%
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P3G-1vs. P3G-2 -- 48-in. Embedment in Weak Soil
Forcevs. Displacement
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Figure 81. Force vs. Displacement for P3G-1 and P3G-2

P3G-1vs. P3G-2 -- 48-in. Embedment in Weak Soil
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Figure 82. Energy vs. Displacement for P3G-1 and P3G-2



8.2.2 72-in. Embedment in Weak Soil
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Tests P3G-3 (HSS 6-in. x 8-in. x 108-in. x 3/16-in.) and P3G-4 (HSS 8-in. x 8-in.

x 108-in. x 3/16-in.) were conducted at an embedment depth of 72 in. (1,829 mm) in

weak soil. Graphs of force vs. displacement and energy vs. displacement can be seen in

Figures 83 and 84. Average force values for both widths at 5, 10, 15, and 20 in. (127,

254, 381, and 508 mm) of displacement are shown numerically in Table 21.

Table 21. P3G-3 and P3G-4 Average Force Comparison — 72-in. Embedment in Weak

Soil
_ @5in. |@10in. | @15in. | @ 20in.
Sin X8 inx 1?)8A|\rllellrggg E; giiél;;lr.))thick woe | 792 | 11591 1009 | 9.66
Bin.x8 in.x 108 In long by 3116 n thick wbe | 2045 | 1390 | 1287 | 1199
Percent Difference 14.1% 19.9% 24.6% 24.1%
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Force (kips)
=
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P3G-3vs. P3G-4 -- 72-in. Embedment in Weak Soil
Forcevs. Displacement
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Figure 83. Force vs. Displacement for P3G-3 and P3G-4
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Figure 84. Energy vs. Displacement for P3G-3 and P3G-4
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8.2.3 96-in. Embedment in Weak Soil

Tests P3G-5 (6-in. x 8-in. x 132-in. x 3/16-in.) and P3G-6 (8-in. x 8-in. x 132-in.
x 3/16-in.) were conducted at an embedment depth of 96 in. (2,438 mm) in weak soil.
Graphs of force vs displacement and energy vs. displacement can be seen in Figures 85
and 86. Average force values for both widths at 5, 10, 15, and 20 in. (127, 254, 381, and
508 mm) of displacement are shown numerically in Table 22.
Table 22. P3G-5 and P3G-6 Average Force Comparison — 96-in. Embedment in Weak

Soil

@10 | @15 | @20

n. n. n.
20.04 18.68 17.74 17.38

@ 5in.

P3G-5 Average Force (Kip)

6in. x 8in. x 132 in. long by 3/16 in. thick tube
P3G-6 Average Force (kip)

6 in. x 8 in. x 132 in. long by 3/16 in. thick tube

Percent Difference 0.4% 4.6% 6.7% 8.0%

20.13 19.54 18.94 18.76
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P3G-5vs. P3G-6-- 96-in. Embedment in Weak Soil
Forcevs. Displacement
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Figure 85. Force vs. Displacement for P3G-5 and P3G-6
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Figure 86. Energy vs. Displacement for P3G-5 and P3G-6



8.2.4 48-in. Embedment in Strong Soil
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Tests P3G-7 (HSS 6-in. x 8-in. x 84-in. x 3/16-in.) and the average between P3G-

8 (HSS 8-in. x 8-in. x 84-in. x 3/16-in.) and P3G-17 (HSS 8-in. x 8-in. x 84-in. x 3/8-in.)

were conducted at an embedment depth of 48 in. (1,219 mm) in strong soil. P3G-8 and

P3G-17 were averaged together because the only difference between the two tests was

the post thickness and both tests behaved similarly to each other except for a small

inertial spike at the beginning of the test. Graphs of force vs. displacement and energy vs.

displacement can be seen in Figures 87 and 88. Average force values for both widths at 5,

10, 15, and 20 in. (127, 254, 381, and 508 mm) of displacement are shown numerically in

Table 23.

Table 23. P3G-7 and the average of P3G-8 and P3G-17 Average Force Comparison — 48-

in. Embedment in Strong Soil

@5in. | @10in. | @15in. | @ 20in.
P3G-7 Average Force (Kip)
6in. x 8in. x 84 in. long by 3/16 in. thick tube 15.03 14.75 14.13 1314
P3G-8 & P3G-17 Composite Average Force (kip)
8in.x8in. x 84 in. long by 3/16 in. and 3/8 in. thick tube 22.06 2168 2027 18.72
Percent Difference 46.7% 47.0% 43.5% 42.4%
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P3G-7 vs. P3G-8 and P3G-17 -- 48-in. Embedment in Strong Soil
Forcevs. Displacement
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Figure 87. Force vs. Displacement for P3G-7 and the average of P3G-8 and P3G-17
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Figure 88. Energy vs. Displacement for P3G-and the average of P3G-8 and P3G-17



8.2.5 72-in. Embedment in Strong Soil
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P3G-18 (HSS 6-in. x 8-in. x 108-in. x 3/8-in.) and P3G-19 (HSS 8-in. x 8-in. x

108-in. x 3/8-in.) were conducted at an embedment depth of 72 in. (1,829 mm) in strong

soil. Graphs of force vs. displacement and energy vs. displacement can be seen in

Figures 89 and 90. Average force values for both widths at 5, 10, 15, and 20 in. (127,

254, 381, and 508 mm) of displacement are shown numerically in Table 24.

Table 24. P3G-18 and P3G-19 Average Force Comparison — 72-in. Embedment in Strong

Soil
_ @5in. | @10in. | @15in. | @ 20in.
6 in. X BITr??(igEﬁ\r/]ezggg ltj;rBC/g (llr?r:?mk tube 29.89 26.75 28.38 28.85
Bin 8 x 108 n long by 3 in thickwbe | P20 | 029 | 3173 | 3205
Percent Difference 11.1% 13.3% 11.8% 11.1%
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P3G-18 vs. P3G-19 -- 72-in. Embedment in Strong Soil
Forcevs. Displacement
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Figure 89. Force vs. Displacement for P3G-18 and P3G-19
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Figure 90. Energy vs. Displacement for P3G-18 and P3G-19
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8.2.6 Post Width Discussion

If the average force at 15 in. (381 mm) of displacement for all of the tests in weak
soil are compared, it can be seen that the 8-in. wide posts at embedment depths of 48 and
96 in. (1,219 and 2,438 mm) experienced forces 7.2 and 6.7 percent greater than a post
with a 6 in. (152 mm) width. These values are very similar, but the increase in post-soil
forces were more dramatic at an embedment depth of 72 in. (1,829 mm). At this
intermediate depth, the 8-in. (203-mm) post width experienced an average force 24.6
percent higher than seen with a 6-in. (152-mm) post width at 15 in. (381 mm) of
deflection. Since these results do not provide a consistent trend, a clear determination as
to how post width at different embedment depths effects the overall post-soil interaction
in weak soil was not possible. Even though it was not possible to glean clear and
consistent results from this data series, it does suggest that post width at lower and higher
embedment depths has little effect on the post-soil interaction forces. Further, post
embedment depth was a strong indicator of these forces. At intermediate depths, it
appears that post width plays a meaningful role in the force data. In this testing series,
only posts with 6-in. (152-mm) and 8-in (203-mm) widths were tested, which limited the
ability to further define the variation in post-soil interaction forces as the post width
varied in weak soil.

The tests completed in strong soil showed inconsistent results when comparing
their average force values at 15 in. (381 mm) of displacement. At an embedment depth of
48 in. (1,245 mm), the 8 in. (203 mm) wide posts experienced an average force 43.5
percent larger than the corresponding test with a width of 6 in. (152 mm). At a 72-in.

(1,829-mm) embedment, the 8-in. (203-mm) wide posts experienced an average force
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11.8 percent larger than the corresponding tests with a 6-in. (152-mm) width. The tests

completed in strong soil demonstrated larger increases in post-soil forces with an increase
in post width as compared to the tests completed in weak soil. With only two data points,
it was difficult to determine any specific finding with regards to the effect of post width
on the overall post-soil interaction forces. However, the results suggest that as
embedment depth increases, the effect of post width on the post-soil forces decreases.

The results obtained for the comparison of 6-in and 8-in. (152-mm and 203-mm)
wide posts found that the post-soil interaction forces tend to increase as the post width
increases. Nearly all of the tests completed in both weak and strong soils follow this
overall trend, but when the tests are compared against each other no conclusion can be
made to establish an exact mathematical relationship. Force increase values between a 6-
in. and 8-in. (152-mm and 203-mm) width are shown below in Table 25. In order to
better define the effect of post width on the post soil interaction forces, additional post
testing is needed. This expanded testing should include additional post widths, such as 4
and 10 in. (102 and 254 mm), additional embedment depths, such as 30 and 90 in. (762
and 2,286 mm), and multiple tests should be conducted at each width, embedment depth
and soil type.

Table 25. Force Increase from 6-in. to 8-in. Width

Testing Configuration Force Increase from 6-in. to 8-in. Width Force Increase at 15-in. of Displacement
48-in. Embedment in Weak Soil 1.06 -1.10 1.07
72-in. Embedment in Weak Soil 1.14-1.25 1.25
96-in. Embedment in Weak Soil 1.00-1.08 1.07
48-in. Embedment in Strong Soil 1.42-1.47 1.43
72-in. Embedment in Strong Soil 1.11-1.13 1.12
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8.3 Embedment Depth

During this testing series, an attempt was made to quantify the effect of post
embedment depth on post-soil interaction forces by comparing the results of dynamic
posttests with different embedment depths installed with similar post widths and soil
types. Posts embedded at 78, 90, and 102 in. (1,981, 2,286 and 2,591 mm) were tested
with a post width of 4 in. (102 mm) in weak soil. Embedment depths of 48 and 72 in.
(1,219 and 1,829 mm) were tested with post widths of 6 and 8 in (152 and 203 mm) in
weak and strong soil. These two post widths were additionally tests at a 96-in. (2,438
mm) embedment depth in weak soil. It has been previously reported that the post-soil
interaction forces due to the soil pressure increase with the square of the ratio of post

embedment depths, as shown mathematically below and found in MASH [1].

EDZ 2
F2=F (E_)
D1

8.3.1 4-in. Width in Weak Soil

Test P3G-13 (HSS 4 in. x 8 in. x 110 in. x 3/16 in.) (102 mm x 203 mm x 2,794
mm x 5 mm), P3G-14 (HSS 4 in. x 8 in. x 122 in. x 3/16 in.) (102 mm x 203 mm x 3,099
mm x 5 mm), P3G-22 (HSS 4 in. x 8 in. x 122 in. x 3/8 in.) (102 mm x 203 mm x 3,099
mm X 10 mm) and P3G-15 (HSS 4 in. x 8 in. x 134 in. x 3/16 in.) (102 mm x 203 mm x
3,404 mm x 5 mm) had posts with widths of 4 in. (102 mm) and were tested in weak soil.
Initially, it was hypothesized that test P3G-22 could be averaged with test P3G-14,
because the only difference between these two tests was the post thickness. However,

P3G-22 and P3G-14 were analyzed separately, because post-soil interactions were not

(54)
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similar. Force vs. displacement and energy vs. displacement is provided in Figures 91 and

92.

Average force for embedment depths of 78, 90, and 102 in. (1,981, 2,286, and
2,591 mm) at 5, 10, 15, and 20 in. (127, 254, 381, and 508 mm) of displacement are
shown numerically in Tables 26 through 28. A table comparing all test results for a 4-in.
(102-mm) post width in weak soil is shown in Table 29.

Equation (54) suggests that the forces seen in a post at a 90-in. (2,286-mm)
embedment should be around 33 percent higher than the forces seen in a post at a 78-in.
(1,981-mm) embedment. This finding was not confirmed with test results, as shown in
Table 26, with a post thickness of 3/16 in. (5 mm), it can be seen that Equation (54)
correlates less with the experimental data at 20 in. (508 mm) of displacement but at 10 in.
(254 mm) the experimental data agrees with the analytical relationship. When the data
shown in Table 26 are averaged across all 20 in. (508 mm) of displacement a 1.5 percent
error between the theoretical and experimental data is obtained.

In test P3G-22 (HSS 4-in. x 8-in. x 122-in. x 3/8-in.), the post thickness was
doubled to 3/8 in. (10 mm). As mentioned previously, it was originally assumed that the
overall dynamic response should not differ much after the thickness was doubled, except
for a small inertial spike at the beginning. However, the data did not match these
expectations. Table 26 shows that throughout the test the post-soil force equation vastly
overestimates the post-soil interaction forces. This suggests that Equation (54) is not

valid when the post thickness is changed.



158
Table 26. Test Nos. P3G-13, P3G-14, P3G-22, and P3G-15 Average Force Values - 4-in.

Width in Weak Soil

@ 5" @ 10" | @ 15" | @20"

P3G-13 Average Force (kip), 78-in. Embedment

HSS 4-in. x 8-in. x 110-in. x 3/16-in. 9.10 8.39 7.37 6.97

P3G-14 Average Force (kip), 90-in. Embedment

HSS 4-in. x 8-in. x 122-in. x 3/16-in. 11.62 11.18 10.21 10.00

P3G-22 Average Force (kip), 90-in. Embedment

HSS 4-in. x 8-in. x 122-in. x 3/8-in. 19.55 14.99 13.74 13.58

P3G-15 Average Force (kip), 102-in. Embedment

HSS 4-in. x 8-in. x 134-in. x 3/16-in. 1115 12.64 12:81 12.85

Table 27 compares tests P3G-13 (HSS 4-in. x 8-in. x 110-in. x 3/16-in.) and P3G-
15 (HSS 4-in. x 8-in. x 134-in. x 3/16-in.), which were tested at embedment depths of 72
in. and 102 in. (1,828 and 2,591 mm). Equation (54) suggests that the forces seen in a
post at a 102-in. (2,591-mm) embedment depth should be approximately 71 percent
higher than those experienced by a post embedded at 72 in. (1,829 mm). Averaging the
results in Table 27 across all 20 in. (508 mm) results in a 9.1 percent error between the
experimental and theoretical data.

Table 27. Test nos. P3G-13 and P3G-15 Force Values- 4-in. Width in Weak Soil

@ 5" @ 10" | @ 15" | @20"

P3G-13 Average Force (kip), 78-in. Embedment

HSS 4-in. x 8-in. x 110-in. x 3/16-in. 9.10 8.39 7.37 6.97

P3G-15 Average Force (kip), 102-in. Embedment

HSS 4-in. x 8-in. x 134-in. x 3/16-in. 11.15 12.64 12.81 12.85

Tests P3G-14 (HSS 4-in x 8-in. x 122-in. x 3/16-in.) and P3G-15 (HSS 4-in. x 8-

in. X 134-in. x 3/16-in.) were tested at embedment depths of 90 and 102 in. (2,286 and
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2,591 mm). Equation (54) suggests that a post embedded at 102 in. (2,591 mm) should

experience forces which are approximately 28 percent higher than the force experienced
by a post embedded at 90 in. (2,286). Results are summarized in Table 21. In general,
estimates approached the experimental value but

Table 28 Equation (54) did not represent the test data very well.

In test P3G-22 (HSS 4-in. x 8-in. x 122-in. x 3/8-in.) the post thickness was
doubled to 3/8 in. (10 mm). It was assumed that the overall dynamic response would not
differ except for a small inertial spike at the beginning of the test, but the data shown in
Table 28 indicates that the thicker post sustained a higher average force throughout the
impact.

Table 28. Test nos. P3G-14 and P3G-15 Average Force Values — 4-in. Width in Weak

Soil

@5 | @10" | @15° | @20"
T e g™ | we | n | wa | oo
T e v | s | o | e | oo
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P3G-13vs. P3G-14 vs. P3G-15 -- 4-in. Width in Weak Soil
Forcevs. Displacement
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Table 29 below shows the excepted and actual increase seen in the post-soil

interaction forces as the embedment depth of the posts increases from 90 to 102 in.

(2,286 and 2,591 mm). The data obtained from P3G-22 (HSS 4-in. x 8-in. x 122-in. x 3/8-
in.) was not included in this summary table because of the large discrepancies seen
between the expected and actual force increases when comparing this test to the other
tests. This discrepancy suggests that the change in post thickness at these embedment
depths and at a post width of 4 in. (102 mm) impacts the validity of Equation (54), but
more testing is needed to confirm these results.

Table 29. Expected vs. Actual Force Increase — 4-in. Width in Weak Soil

4-in Width In Weak Soil

Embedment Change (in.) Expected Force Increase Actual Force Increase
78:90 1.33 1.28-1.43
78 :102 1.71 1.23-1.84
90:102 1.28 96-1.29




162
8.3.2 6-in. Width in Weak Soil

Tests P3G-1 (HSS 6-in. x 8-in. x 84-in. x 3/16-in.), P3G-3 (HSS 6-in. x 8-in. X
108-in. x 3/16-in.) and P3G-5 (HSS 6-in. x 8-in. x 132-in. x 3/16-in.) had posts with
widths of 6 in. (152 mm) and were tested in weak soil. Force vs. displacement and energy
vs. displacement can be seen in Figures 93 and 94. Average post-soil forces for
embedment depths of 48, 72, and 96 in. (1,219, 1,829, 2,438 mm) at 5, 10, 15, and 20 in.
(127, 254, 381, and 508 mm) of displacement are shown in Tables 30 through 32, and a
comparison of all tests conducted with a 6-in. (152-mm) post width in weak soil are
shown in Table 33.

Equation (54) suggests that the forces seen in a post at an embedment depth of 72
in. (1,829 mm) should be around 125 percent higher than the values seen in a post at an
embedment depth of 48 in. (1,219 mm). Based on average force computations,
researchers determined that the equation overestimated the post-soil resistance force, as

shown in Table 30.

Table 30. Test nos. P3G-1 and P3G-3 Average Force Values- 6-in. Width in Weak Soil

@ 5" @ 10" | @ 15" | @20"

P3G-1 Average Force (Kip), 48-in. Embedment

HSS 4-in. x 8-in. x 110-in. x 3/16-in. 12.80 7.96 6.43 5.66

P3G-3 Average Force (Kip), 72-in. Embedment

HSS 4-in. x 8-in. x 122-in. x 3/16-in. 17.92 11.59 10.09 9.66

Test nos. P3G-1 (HSS 6-in. x 8-in. x 84-in. x 3/16-in.) and P3G-5 (HSS 6-in. x 8-

in. X 108-in. x 3/16-in.) were embedded to depths of 48 in. and 96 in. (1,219 mm and
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2,438 mm) respectively. Equation (54) suggests that the soil resistance forces in a post

with a 96-in. (2,438 mm) embedment depth should be 300 percent larger than the forces
experienced by a post with a 48-in. (1,219 mm) embedment. The average force values
shown in the table range from approximately a 56 to 207 percent increase, which is
significantly less that what is expected.

Table 31. Test nos. P3G-1 and P3G-5 Average Force Values- 6-in. Width in Weak Soil

@ 5" @ 10" | @ 15" | @20"

P3G-1 Average Force (Kip), 48-in. Embedment

HSS 4-in. x 8-in. x 110-in. x 3/16-in. 12.50 7.96 6.43 2.66

P3G-5 Average Force (Kip), 90-in. Embedment

HSS 4-in. x 8-in. x 122-in. x 3/8-in. 20.04 18.68 17.74 17.58

Tests P3G-3 (HSS 6-in. x 8-in. x 108-in. x 3/16-in.) and P3G-5 (HSS 6-in. x 8-in.
X 132-in. x 3/16-in.) were completed with embedment depths of 72 in. and 96 in. (1,829
mm and 2,438 mm), respectively. Equation (54) states that the post-soil interaction forces
seen in a post at a depth of 96 in. (2,438 mm) should be approximately 77 percent higher
than the corresponding forces seen in a post embedded at 72 in. (1,829 mm). As shown in
Table 32 the data indicates that at 15 and 20 in. (381 and 508 mm) of deflection the
analytical model correlated well with the experimental data, but at smaller deflections the

correlation was not apparent.
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Table 32. Test nos. P3G-3 and P3G-5 Average Force Values- 6-in. Width in Weak Soil

@5" | @10" | @ 15" | @20"

P3G-3 Average Force (kip), 72-in. Embedment
HSS 4-in. x 8-in. x 122-in. x 3/16-in. 17.92 11.59 10.09 9.66
P3G-5 Average Force (kip), 90-in. Embedment 20.04 18.68 17.74 17.38

HSS 4-in. x 8-in. x 122-in. x 3/8-in.
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P3G-1vs. P3G-3vs. P3G-5 -- 6-in. Width in Weak Soil
Forcevs. Displacement
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Figure 93. Force vs. Displacement for P3G-1, P3G-3 and P3G-5

P3G-1vs. P3G-3 vs. P3G-5 -- 6-in. Width in Weak Soil
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Figure 94. Energy vs. Displacement for P3G-1, P3G-3, and P3G-5
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Table 33. Expected vs. Actual Force Increase — 6-in. Width in Weak Soil

6-in. Width in Weak Soil
Embedment Change Expected Force Increase Actual Force Increase
48 : 72 2.25 1.40-1.71
48 : 96 4.00 1.57 - 3.07
72:96 1.78 1.12-1.8

8.3.3 8-in. Width in Weak Soil

Tests P3G-2 (HSS 8-in. x 8-in. x 84-in. x 3/16-in.), P3G-4 (HSS 8-in. x 8-in. X
108-in. x 3/16-in.) and P3G-6 (HSS 8-in. x 8-in. x 132-in. x 3/16-in.) had posts with
widths of 8 in. (203 mm) and were tested in weak soil. Force vs. displacement and energy
vs. displacement can be seen in Figures 95 and 96. Average post-soil forces for
embedment depths of 48, 72, and 96 in. (1,219, 1,829, and 2,438 mm) at 5, 10, 15, and 20
in. (127, 254, 381, and 508 mm) of displacement are shown numerically in Tables 34
through 36, and a table comparing all tests conducted with an 8-in. (203-mm) width in
weak soil is shown in Table 37.

Equation (54) suggests that the forces experienced in a post at an embedment
depth of 72 in. (1,829 mm) should be around 125 percent higher than the force
experienced in a post at an embedment depth of 48 in. (1,219 mm). However, as the
displacement increases from 5 to 20 in. (127 to 508 mm), the difference in the forces
experienced increased from approximately 50 to 98 percent as shown in Table 34. Again,

Equation (54) overestimated the effect of embedment depths on forces.
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Table 34. Test nos. P3G-2 and P3G-4 Average Force Values — 8-in. Width in Weak Soil

@ 5" @ 10" | @ 15" | @20"

P3G-2 Average Force (kip), 48 in. Embedment
HSS 8-in. x 8-in. x 84-in. x 3/16-in.

P3G-4 Average Force (kip), 72-in. Embedment
HSS 8-in. x 8-in. x 108-in. x 3/16-in.

13.62 8.72 6.89 6.05

20.45 13.90 12.57 11.99

Table 35 compares tests P3G-2 (HSS 8-in. x 8-in. x 84-in. x 3/16-in.) and P3G-6
(HSS 8-in. x 8-in. x 132-in. x 3/16-in.) which were completed with embedment depths of
48 in. and 96 in. (1,219 to 2,438-mm). Equation (54) suggests that the forces seen in a
post at a 96-in. (2,438-mm) embedment should be 300 percent larger than the forces seen
in a post at a 48-in. (1,219-mm) embedment. The equation-driven embedment depth
amplification over predicted soil forces, which was consistent with other test results.

Table 35. Test nos. P3G-2 and P3G-6 Average Force Values — 8-in. Width in Weak Soil

@ 5" @ 10" | @ 15" | @20"
P3G-2 Average Force (kip), 48 in. Embedment
HSS 8-in. x 8-in. x 84-in. x 3/16-in. 1362 | 872 | 689 | 6.05
P3G-6 Average Force (kip), 90-in. Embedment
HSS 8-in. x 8-in. x 132-in. x 3/16-in. 2013 1 1954 | 1894 | 18.76

Tests P3G-4 (HSS 8-in. x 8-in. x 108-in. x 3/16-in.) and P3G-6 (HSS 8-in. x 8-in.

X 132-in. x 3/16-in.) were completed at 72 and 96-in. (1,829 and 2,438-mm) embedment

depths. Using Equation (54) the estimated soil resistive forces for a post with an

embedment depth of 96 in. (2,438 mm) should be approximately 78 percent higher than

the corresponding soil resistive forces for a post with an embedment depth of 72 in.
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(1,829 mm). Once again, physical test data indicated lower post-soil resistive force that

the equation estimated.

Table 36. Test nos. P3G-4 and P3G-6 Average Force Values — 8-in. Width in Weak Soil

@ 5" @ 10" | @ 15" | @20"

P3G-4 Average Force (kip), 72-in. Embedment
HSS 8-in. x 8-in. x 108-in. x 3/16-in. 2045 | 1390 | 1257 | 11.99
P3G-6 Average Force (kip), 90-in. Embedment 20.13 1054 18.94 18.76

HSS 8-in. x 8-in. x 132-in. x 3/16-in.
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P3G-2vs. P3G-4 vs. P3G-6 -- 8-in. Width in Weak Soil

Forcevs. Displacement
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Figure 95. Force vs. Displacement for P3G-2, P3G-4 and P3G-6
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Figure 96. Energy vs. Displacement for P3G-2, P3G-4 and P3G-6
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Table 37. Expected vs. Actual Force Increase — 8-in. Width in Weak Soil

8-in. Width in Weak Soil

Embedment Change Expected Force Increase Actual Force Increase
48 : 72 2.25 1.5-1.98
48 : 96 4.00 1.48 -3.10
72:96 1.78 .98 -1.57

8.3.4 6-in. Width in Strong Soil

Tests P3G-7 (HSS 6-in. x 8-in. x 84-in. x 3/16-in.), P3G-18 (HSS 6-in. x 8-in. x
108-in. x 3/8-in.) had posts with widths of 6 in. (152 mm) and were tested in strong soil.
Force vs. displacement and energy vs. displacement can be seen in Figures 97 and 98.
Average post-soil forces for embedment depths of 48 and 72 in. (1,219 and 1,829 mm) at
5, 10, 15, and 20 in. (127, 254, 381, 508 mm) of displacement are shown in Table 38, and
a table comparing all tests conducted with a 6-in. (152-mm) width in strong soil is shown
in Table 39.

Using Equation (54), the soil resistive forces for a post at an embedment depth of
72 in. (1,829 mm) should be approximately 125 percent larger than the post-soil forces
associated with an embedment depth of 48 in. (1,219 mm). Table 36 shows that at large
soil displacements, the difference in the average force values was approximately 120
percent. Thus, experimental data correlates well with the analytical model at large
deflections of 15 in. or more.

Table 38. Test nos. P3G-7 and P3G-18 Average Force Values — 6°° Width in Strong Soil

@ 5" @ 10" | @ 15" | @20"
P3G-7 Average Force (kip), 48 in. Embedment
HSS 6-in. x 8-in. x 84-in. x 3/16-in. 1503 | 1475 | 1413 | 1314
P3G-18 Average Force (kip), 72-in. Embedment
HSS 6-in. x 8-in. x 108-in. x 3/8-in. 2989 | 2675 | 2838 | 2885
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P3G-7 vs. P3G-18-- 6-in. Width in Strong Soil
Forcevs. Displacement
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Figure 97. Force vs. Displacement for P3G-7 and P3G-18
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Figure 98. Energy vs. Displacement for P3G-7 and P3G-18



Table 39. Expected vs. Actual Force Increase — 6-in. Width in Strong Soil

6-in. Width in Strong Soil

Embedment Change

Expected Force Increase

Actual Force Increase

48 : 72

2.25

1.99-2.2

8.3.5 8-in. Width in a Strong Soil

Test nos. P3G-8 and P3G-17 (HSS 8-in. x 8-in. x 84-in. x 3/16-in. and 3/8-in.),
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which hold embedment depths of 48 in, were averaged together and plotted with test no

P3G-19 (HSS 8-in. x 8-in. x 108-in. x 3/8-in.),which had an embedment depth of 72 in.

Force vs. displacement and energy vs. displacement can be seen in Figures 99 and 100.

Average post-soil forces for embedment depths of 48 and 72 in. (1,219 1,829 mm) at 5,

10, 15, and 20 in. (127, 254, 381, 508 mm) of displacement are shown in Table 40.

Equation (54) suggests that the forces seen in a post at an embedment depth of 72

in. (1,829 mm) should be approximately 125 percent higher than the values seen in a post

at an embedment depth of 48 in. (1,219 mm). Test results indicated that the equation

overestimated post-soil forces at all bogie displacements.

Table 40. The average of Test nos. P3G-8 and P3G-17 and Test no. P3G-19 Average

Force Values — 8-in. Width in Strong Soil

@5" | @10" | @ 15" | @20"

P3G-8 and P3G-17 Average Force (kip), 48 in. Embedment
HSS 8-in. x 8-in. x 84-in. x 3/16-in. and 3/8 in. 22.06 | 2168 ) 20.27 | 18.72
P3G-19 Average Force (kip), 72-in. Embedment 3320 | 3029 | 31.73 | 32.05

HSS 8-in. x 8-in. x 108-in. x 3/8-in.
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P3G-8and P3G-17 vs. P3G-19 -- 8-in. Width in Strong Soil
Forcevs. Displacement
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Table 41. Expected vs. Actual Force Increase — 8-in. Width in Strong Soil

8-in. Width in Strong Soil
Embedment Change Expected Force Increase Actual Force Increase
72:48 2.25 14-1.71

8.3.6 Embedment Depth Discussion

Historically, the post-soil force estimation shown in Equation (54) has been used
to estimate the stiffening effect of increasing embedment depth. Although higher
embedment depths were associated with increased post-soil forces, the increase was not
consistent with predictions. For example, the experimental data for posts with 6 in. (152
mm) widths tested in strong soil showed that the equation overestimates the forces at 15
in. (381 mm) of deflection by approximately 25 percent, while the equation overestimates
the post-soil forces for an 8-in. (203-mm) wide post by approximately 70 percent at 15 in.
(381 mm) of deflection. No constant coefficient was determined to relate all post-soil
results based on width or embedment depth.

The average post-soil forces at 15 in. (381 mm) of deflection were plotted and are
shown in Figure 101. A summary table test results is shown in Table 42. Test data shows
that as the difference in embedment depths increases, the assumed parabolic relationship
is not as effective, but for small changes in embedment the result is more reasonable.

If more tests at different embedment depths and widths were completed a graph
such as the one shown below could potentially be used to estimate, through linear
interpolation, the post-soil interaction forces for different embedment depths. Additional
dynamic post testing at different widths and embedment depths needs to be completed
before this type of tool can accurately predict the forces seen in posts at different

embedment depths.
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Average Force at 15-in. vs. Embedment Depth
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Figure 101. Average Forces at 15 in. of Deflection vs. Embedment Depth

Table 42. Expected vs Actual Force Increase

Actual Increase

Embedment Change (in.) Expected Force Increase | 4-in. Weak Soil | 6-in. Weak Soil | 8-in. Weak Soil | 6-in. Strong Soil | 8-in. Strong Soil
78:90 1.33 1.28-1.43 - - - -
78 :102 1.71 1.23-1.84
90:102 1.28 .96-1.29 - - - -
48:72 2.25 - 1.40-1.71 1.5-1.98 1.99-2.2 14-1.71
48:96 4.00 1.57 - 3.07 1.48-3.10 - -
72:96 1.78 1.12-1.8 .98 -1.57
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8.4 Soil Type

During this testing series an attempt to quantify the effect of soil strength on post-
soil interaction forces was completed by comparing results for tests of posts with similar
widths and embedment depths installed in different soils.

Testing was completed on posts with both 6 and 8-in. (152 and 203-mm) widths
in embedment depths of 48 and 72 in. (1,219 and 1,829 mm) in both weak and strong
soil.

8.4.1 6-in. Width in a 48-in Embedment

Tests P3G-1 (HSS 6-in. x 8-in. x 84-in. x 3/16-in.) and P3G-7 (HSS 6-in. x 8-in. X
84-in. x 3/16-in.) contained posts with 6-in. (152-mm) widths and were tested in a 48-in.
(1,219-mm) embedment depth in both weak and strong soils. Force vs. displacement and
energy vs. displacement can be seen in Figures 102 and 103. Average post-soil forces at
5, 10, 15, and 20 in. (127, 254, 381, and 508 mm) of displacement are shown numerically
in Table 43.

The data in this table shows that the percent difference of the average forces
between the posts installed in weak versus strong soil increased from approximately 17 to

132 percent as the displacement increased from 5 to 20 in. (127 to 508 mm) of deflection.
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Table 43. Test nos. P3G-1 and P3G-7 Average Force Values — 6-in. Width in a 48-in.

Embedment
@5" | @10" | @ 15" | @20"
HSS 61 6. » 84-in. « 3/16-n. Weak oil | 1280 | 7% | 643 | ses
HSS 6. S-m. B, X 316-1n, Srong Soil | 1503 | 1475 | 1413 | 134
Average Force Ratio 1.17 1.85 2.20 2.32
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8.4.1 6-in. Width in a 72-in. Embedment
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Tests P3G-3 (HSS 6-in. x 8-in. x 9-ft. x 3/16-in.) and P3G-18 (HSS 6-in. x 8-in. X

9-ft. x 3/8-in.) contained posts with 6-in. (152-mm) widths and were tested in a 72-in.

(1,829-mm) embedment depth in both weak and strong soils. Force vs. displacement and

energy vs. displacement can be seen in Figures 104 and 105. Average post-soil forces at

5, 10, 15, and 20 in. (127, 254, 381, and 508 mm) of displacement are shown numerically

in Table 44.

The data in this table shows that the percent difference of the average forces

between the posts installed in weak versus strong soil increased from approximately 66 to

199 percent as the displacement increased from 5 to 20 in. (127 to 508 mm) of deflection.

Table 44. Test nos. P3G-3 and P3G-18 Average Force Values — 6-in. Width in a 72-in.

Embedment

@ 5" @ 10" @ 15" @20"
P3G-3 Average Force (Kip), 72 in. Embedment
HSS 6-in. X 8-in. x 108-in. x 3/16-in., Weak Soil | 1792 | 1159 | 10.09 1 9.66
P3G-18 Average Force (kip), 72-in. Embedment
HSS 6-in. x 8-in. x 108-in. x 3/16-in., Strong Soil | 2289 | 2675 | 28.38 | 2885
Average Force Ratio 1.67 3.98 2.81 2.99
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P3G-3vs. P3G-18 -- 6-in. Width in a 72-in. Embedment
Forcevs. Displacement
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Figure 104. Force vs. Displacement for P3G-3 and P3G-18
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8.4.2 8-in. Width in a 48-in. Embedment

Tests P3G-2 (HSS 8-in. x 8-in. x 84-in. x 3/16-in.) and the average of P3G-8 and
P3G-17 (HSS 8-in. x 8-in. x 84-in. x 3/16-in. and 3/8-in.) utilized posts with 8-in. (203-
mm) widths and were tested with 48-in. (1,219-mm) embedment depths in both weak and
strong soil, respectively. Force vs. displacement and energy vs. displacement can be seen
in Figures 106 and 107. Average post-soil forces at 5, 10, 15, and 20 in. (127, 254, 381,
and 508 mm) of displacement are shown numerically in Table 45.

The data in this table shows that the percent difference of the average forces
between the posts installed in weak versus strong soil increased from approximately 62 to

210 percent as the displacement increased from 5 to 20 in. (127 to 508 mm) of deflection.

Table 45. Test nos. P3G-2 and the average of P3G-8 and P3G-17 Average Force Values —

8-in. Width in a 48-in. Embedment

@ 5" @ 10" | @15" | @20"

P3G-2 Average Force (kip), Weak Soil

HSS 8-in. x 8-in. x 84-in. x 3/16-in. 13.62 8.72 6.89 6.05

P3G-8 & P3G-17 Average Force (kip), Strong Soil

HSS 8-in. x 8-in. x 84-in. x 3/16-in. and 3/8-in. 22.06 21.68 20.27 18.72

Average Force Ratio 1.62 2.49 2.94 3.09
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P3G-2vs.P3G-8 and P3G-17 -- 8-in. Width in a 48-in. Embedment
Forcevs. Displacement
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Figure 106. Force vs. Displacement for P3G-2 and the average of P3G-8 and P3G-17

P3G-2vs. P3G-8 and P3G-17 -- 8-in. Width in a 48-in. Embedment
Energy vs. Displacement
600

500

400

Energy (k-in.)
N w
o o
o o

=
o
o

o

0 10 20 30 40 50 60 70 80

Displacement(in.)

P3G-2 Weak Soil (8-in. x 8-in. x 84-in. x 3/16-in.)
P3G-8and P3G-17 Average in Strong Soil (8-in. x 8-in. x 84-in. x 3/16-in. and 3/8-in.)
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8.4.3 8-in. Width in a 72-in. Embedment
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Tests P3G-4 (HSS 8-in. x 8-in. x 108-in. x 3/16-in.) and P3G-19 (HSS 8-in. x 8-

in. x 108-in. x 3/8-in.) utilized 8-in. (203-mm) wide posts and were tested with 72-in.

(1,829-mm) embedment depths in both weak and strong soils, respectively. Graphs of

force vs. displacement and energy vs. displacement can be seen in Figures 108 and 1009.

Average force values at 5, 10, 15, and 20 in. (127, 254, 381, and 508 mm) of

displacement are shown numerically in Table 46.

The data in this table shows that the percent difference of the average forces

between the posts installed in weak versus strong soil increased from approximately 62 to

167 percent as the displacement increased from 5 to 20 in. (127 to 508 mm) of deflection.

Table 46. Test nos. P3G-4 and P3G-19 Average Force Values — 8-in. Width in a 48-in.

Embedment
@ 5" @ 10" | @ 15" @20"
P oo | %5 | 130 | 1257 | 1199
1SS 61 Bin 6410 3/16-1n. Strong Soil | 3920 | 3029 | 3173 | 3209
Average Force Ratio 1.62 2.18 2.52 2.67
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8.4.4 Soil Discussion

The tests comparing weak and strong soils routinely shows that as the post
deflection increases from 5 in. to 20 in. (127 mm to 508 mm), the average post-soil
interaction forces for the tests completed in strong soil experiences forces 1.17 to 3.09
times the forces seen for the tests completed in weak soil, as shown in Table 47.
Unfortunately, no obvious relationship could be determined regarding the effect of post
width and embedment depth. For example, as the embedment depth increased from 48 to
72 in. (1,219 to 1,829 mm) with a 6-in. (152 mm) width post the average forces
increased. The 8-in. wide posts, however had a different trend. More testing is
recommended to discover the overlying principles of the post-soil interaction forces when
the soil type is changed from weak to strong.

Table 47. Force Increase from Weak to Strong Soil

Testing Configuration Force Increase from Weak to Strong Soil | Force Increase at 15-in. of Displacement
6-in. Width in a 48-in. Embedment 1.17-2.32 2.2
6-in. Width in a 72-in. Embedment 1.67-2.99 2.81
8-in. Width in a 48-in. Embedment 1.62 - 3.09 2.94
8-in. Width in a 72-in. Embedment 1.62-2.67 2.53
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8.5 Dimensionless Number Study

8.5.1 Purpose and Motivation

Dimensionless numbers or groups are quantitates that do not contain any physical
dimensions and therefore may be used in any dimensionally consistent system.
Frequently, non-dimensional relationships are explored to minimize the size of a test
matrix. Dimensionless groups can be used to solve for important relationships.

Dimensionless groups were created to investigate how post width, post thickness,
and embedment depth were related. Instead of having to test all of these parameters
individually it may be possible to just modify the dimensionless groups and perform a
limited number of additional tests. This would save time and money by limiting the total
number of experiments that need to be conducted.

In this research study, multiple tests were completed with different post widths,
embedment depths, thicknesses, and two types of soil, a smaller strong-soil matrix of the
test results were unavailable due to post yielding. As a result, strong soil relationships
were sparse and not explored in detail.

8.5.2 Buckingham Pi Theorem

The Buckingham Pi theorem is one of the most common methods used to obtain
dimensionless or “pi1” groups and can be completed with minimal mathematical training.
First, the important variables of the system need to be examined and understood. It was
determined that during the post impacts detailed in this thesis that the most important
variables governing the force at 15 in. (318 mm) of deflection were the bogie velocity,

post embedment depth, post mass, post width, and post thickness. A more rigorous
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mathematical definition of this relationship can be seen below, and the variable

definitions are shown in Table 48.
F = f(Vg, Ep,mp, Wp, tp)

Table 48. Pi Variables

) 1%, Pi Group

T, 2" Pi Group

s 3. Pi Group

F Measured Force at 15 in. of Deflection
Wp Post Width

tp Post Thickness

Vg Bogie Velocity

Ep Post Embedment Depth
mp Post Mass

L Length

T Time

M Mass

After the variables are discovered and listed the dimensions of each variable
needs to be stated, which for this situation can be seen below. Note that there are a total
of 6 different variables containing a total of three different dimensions, which are mass,
length and time.

F:AMLT?}; V:{LT™'}; Ep:{L}; mp:{M}; Wp:{L}; tp: {L}

Next, after the number of variables and the number of dimensions is known the
number of pi groups can be calculated with the equation seen below.

No.of Pi Groups = No.of Variables — No.of dimensions
No.of Pi Groups = 6—3 =3

The equation above shows that a total of 3 Pi groups are needed to describe this

experimental situation. After the number of Pi groups are determined the number of

repeating variables also needs to be found. This process is shown mathematically below.
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No.of Repeating Variables = # of Variables — # of Pi Groups

No.of Repating Variables = 6 —3 =3

There is no concrete way to determine which variables should be repeating while
using the Buckingham Pi Theorem but after many iterations it was determined that the
bogie velocity, post width, and post mass would yield three correct Pi groups. The
derivation of these Pi groups is shown in the next section.

8.5.3 Derivation of Dimensionless Groups

Using the Buckingham Pi Theorem described above, three dimensionless groups
were obtained and are shown below. As mentioned previously, the bogie velocity, post
embedment and post mass were chosen as the three repeating variables in this situation.
Dimensional relationships were modified until a unitless Pi group was obtained, as shown
below. The variable and dimension definitions used in the derivation of these Pi groups

are shown in Table 48.

T, = Vg WePmpCF
{LT~ LM AMLT %} = (MTL}°
(MYE*D) (T)(-a-2) (13(@+b+1) — (T }0
M:c+1=0;c=-1
T: —a—2=0;a=-2
La+b+1=-2+b+1=0;b=1

FW,

VBZmP

LS

T, = VBaprmchD



{LT= LI MY(L} = {MTL}°
{M}© (T3CD (L} = (MTL)°

M:c=0

— WP
T, = ED

s = Vg WpPmpCtp
{LTLI{MI{L} = {(MTL}°
{M}(C) {T}(—a) {L}(a+b+1) — {MTL}O

M:c=0

_ tp
T3 1= Wp
Wp
Ty = —
3 tp
Summarized:
FWhp
T =
! VBZmP
Wp
7T2 an—
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8.5.4 Dimensionless Graph

Using the Buckingham Pi Theorem explained above, three dimensionless groups
were co-plotted and results are shown in Figure 110. This graph shows for small
m,values, the relationship between m; and m, is linear. As m, increases the relationship
between 1, and , becomes parabolic or exponential. However, data is still limited, and
although results are promising no definitive relationship was recommended.

Results were also plotted based on the w5 values. The two curves at the lower 75
values, seen on the left in Figure 110, have nearly the same slope; this could mean that
under a certain 7, threshold value the dependency on the mr, value is very weak. If this is
true, a single curve relationship can represent this data, this suggests that the thickness of
the post, on the post-soil interaction forces, is not an important parameter until the ratio
of width to embedment depth is large.

For example, an engineer or designer could solve for the average post-soil force at
15 in. (381 mm) of deflection with a known width, thickness, embedment depth, and
mass based on a prescribed velocity. This could be completed by first solving for m,
and m5. m, will tell you the position on the x-axis and Pi 3 will tell you which of the
curves you should be using. Then these two groups can be used to solve for the ; group
which can be used to back calculate the average force at 15 in. of deflection. As

mentioned previously without more data, it is hard to use this type of graph as each
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individual curve follows a particular Pi 3 value, and correct interpolation between these

curves is very difficult, if not impossible.

With the addition of more data to this diagram, either through experiments or
computations, this method of force prediction could potentially, with accuracy, assist
engineers when they are designing structures that require rectangular posts. Additionally,
higher accuracy will be obtained with the addition of a soil bulk modulus or shear
modulus, and the soil density, but the test data using strong soil was limited. Thus, these

parameters were not taken into account with this this study.

Dimensionless Diagram (Weak Soil)
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Figure 110. Dimensionless Diagram (Weak Soil)



Table 49. Dimensionless Groups Values
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Pi 3 (Wp/tp) = 10.67 Pi 3 (Wp/tp) = 21.33 Pi 3 (Wp/tp) =32 Pi 3 (Wp/tp) = 42.67
PI1(F) | Pi2(Wp/Ed) PI1(F) |Pi2(Wp/Ed) PI1(F) |Pi2(Wp/Ed) Pl 1 (F) Pi 2 (Wp/Ed)
0.392 0.044 0.441 0.051 0.643 0.125 0.800 0.167
0.479 0.039 0.551 0.044 0.785 0.083 1.135 0.111
0.630 0.039 1.130 0.063 1.399 0.083
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9 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

Determining the effect of parameter variations on the overall post-soil interaction
forces during an impact scenario is no trivial task. In an effort to quantify the relationship
between parameter variations and the overall post-soil interaction forces a testing regime
was initiated and completed by incrementally changing post width, post embedment
depth and soil type during bogie testing of thin walled rectangular posts. Comparisons
were made between posts containing 6 and 8-in. (152 and 203-mm) widths, strong and
weak soil, and post embedment depths of 48, 72, 90, 96 and 102 in. (1,219, 1,829, 2,286,
and 2,591 mm).

Testing of the posts containing 6 and 8 in. (152 and 203 mm) widths showed that
the post-soil interaction forces increased as the width was increased. This relationship
was shown in both weak and strong soils and at embedment depths of 48, 72, and 96 in.
(1,219, 1,829, 2,438 mm). For example, the tests completed in weak soil show that at a
48 and 96-in. (1,219 and 2,438-mm) embedment the force seen in the larger width was
1.07 times larger than the force seen in the smaller width, at 15 in. (381 mm) of
deflection, but the force seen in the larger width at a 72-in. (1,829-mm) embedment was
1.25 times larger than the force seen in the smaller width, at 15 in. (381 mm) of
deflection.

An attempt to determine dimensionless groups for weak soil post testing results
showed excellent promise, but data was too sparse to determine definite relationships.

The three dimensionless groups are shown below.

FWhp
=

VBZmP
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Wp

7T —_— —
Wp

7T — —
3 tP

Data from testing a 4 in. (102 mm) post in weak soil at embedment depths of 78,
90, and 102 in. (1,981, 2,286, and 2,591 mm) in weak soil and the data from testing 6 and
8 in. (152 and 203 mm) width posts in 48, 72, and 96 in. (1,219, 1,829, and 2,438 mm) in
weak and strong soil showed that as the embedment depth was increased the post-soil
interaction forces also increased, but the increase was lower than what was suggested by
Equation (54), shown below. The tests completed with the 4 in. (102 mm) post width had
average post-soil interaction forces at 15 in. (381 mm) of deflection very similar to the
prediction using Equation (54), but the tests completed with post widths of 6 and 8 in.

(152 and 203 mm) diverged significantly from the equation predictions.

Epy\°
F2=h (D_)
D1

Results obtained from comparing tests completed in weak soil to those completed
in strong soil show that during all of the tests the post-soil interaction forces seen in
strong soil was always larger than what was seen in weak soil. Due to the minimal
amount of data available for this comparison there were no other meaningful results
garnered from this data set.

The amount of differentiation required to correctly research post-soil interaction
forces in an impact scenario is quite overwhelming and is a function of multiple
parameters including: impact velocity, embedment depth, post mass, post width, post

thickness, soil density, and soul shear or bulk modulus. Using some of these variables in
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conjunction with the Buckingham Pi theorem yielded 3 dimensionless groups relating

these variables to the post-soil interaction forces seen at 15 in. (381 mm) of deflection.
As mentioned above more testing with different widths and embedment depths is

recommended to further analyze this situation.
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Appendix A. Lateral Impact
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Figure A-1. Lateral Impact Loading Configuration
Table A-1. Variable Definitions
Variable Definition
Fi Impact Force
Fa Tensile Force at Top Clamp
Fr Reaction Force at Bottom of Post
Li Distance Between Impact and Top of Parapet
La Distance Between Top Clamp and Top of Parapet
Lr Distance Between Bottom of Post and Top of Parapet
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ZFx=0=—Fi+Fa—1~;

F,=F,— F (Equ.1)

D My =0=F(Li+Lo) — Ly + 1)

_ By + L)

= L+ L) (Eqn.2)

Sub Eqn. 2 into Eqn. 1

B +L)
' (Li + La) "

- [
S AV

g [ L)~ it L)
L rl (Li+La) l

o F;"(Lr - La)
' (Li + La)

(Eqn.3)
D My =0=Fli+La) = Folly — L)

_F;‘(Lr_La) E 4
i — (L1+La) ( qn. )

Eqn.3 is equal to Eqn.4 v

D My =0= Rl +1,) = Fylle — L)

_ Fa(Lr - La)

ey G
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Sub Eqn.5 into Eqn. 1

F,(L.—L
a(r a)=Fa—Fr
(Li+Lr)

(Lr_La)
E=F —F |———
" “ “ (Li+Lr)

_ (Lr - La)
E‘%F_m+uJ

_ (Li + Lr) - (Lr - La)
S I l

— Fa(Li + La)
’ (Li + Lr)

_ B+ Ly)

= —(Li T L) (Eqn.6)

Eqn.2 is equal to Eqn.6 v
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Figure A-2. Lateral Impact Shear and Moment Diagrams

0=—-F(Lg+L)+FE(L—Lg)
Fi(Lg + L) = E.(Lr — Lg)

_ F;"(Lr B La)

F. =
' (Li + La)

(Eqn.7)

Eqn.7 is equal to Eqn.4 v

M, = Fi(Lq + L;)
M, = F.(Ly — Lg)
F, = The Maximum Tension Force Imparted into Upper Anchors

M, = The Maximum Bending Moment
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Appendix B. Longitudinal Impact
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Figure B-1. Longitudinal Impact Loading Configuration

Table B-1. Variable Definitions

Variable

Definition

Fi

Impact Force

Fa

Shear Force at Top Clamp

Fb

Shear Force at Bottom Clamp

Li

Distance Between Impact and Top of Parapet

La

Distance Between Top Clamp and Top of Parapet

Lb

Distance Between Bottom Clamp and Top of Parapet




ZFx=0=—Fi+Fa—Fb

Fi=F,—F, (Eqn.1)

D My =0=Falli+La) = Fy(ly + 1)
_ Fy(Ly +1Ly)

BCETP IS

Sub Eqn. 2 into Eqn. 1

o Fy(Lp +L;) _
' (Li + La) b

ri= () - 1]
FTUPINL 4L,

| @y + L) — (L + L)
Fi B Fb (Li + La) l

_Fp(Lp = Lg)

F; = L+ 1) (Eqn.3)

D My =0=Filli+Lo) = Fy(ly — L)

_Fy(Lp — Lg)

Eqn.3 is equal to Eqn.4 v

D My = 0= Filli + L) — F(Ly — Lo)

_ Fa(Lb B La)

.= —(Li TL) (Eqn.5)
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Sub Eqn.5 into Eqn. 1

Fa(Lb - La)
(L; + Lp)

Ly —
-a [

=F, — Fp

Ly = Lg)

F,=F |1-
b “l L+ L)

(Li + Lp) — (Lp — Lg)
(Li + Lp)

— Fa(Li + La)
b (L; + Lp)

_ Fy(Li +Lp)

“TTrry GO

Eqn.2 is equal to Eqn.6 v
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Figure B-2. Longitudinal Impact Shear and Moment Diagrams

0=—F(Lg+L;)+Fp(Lp — Lg)
Fi(Lg + L) = F,(Lp — Lg)

_Fy(Lp — Lg)

=Ty T

Eqn.7 is equal to Eqn.4 v

My = Fi(Lq + L;)
Mg = Fp(Ly — Lg)
F, = The Maximum Shear Force Imparted into Upper Anchors
M, = The Maximum Bending Moment

F, = The Maximum Shear Force Imparted into Lower Anchors
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Appendix C. Front Wind Loading
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Figure C-1. Front Wind Loading

Table C-1. Variable Definitions

Variable Definition
fw Wind Load Per Unit Length
Fw Total Effective Wind Load
Fa Tensile Force at Top Clamp
Fr Reaction Force at Bottom of Parapet
Hw Chain-Link Height
Lw Distance Between Center of Wind Load and Top of Parapet
La Distance Between Top Clamp and Top of Parapet
Lr Distance Between Bottom of Post and Top of Parapet
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First, the total effective wind load on the structure must be determined:

Hy,
| fudy =, (55)

Next, the centroid of the wind load can be determined:

7= (56)
Ly xfux1
V== T 7)

Now, a simplified model of the system that represents the wind load as a point

load can be created and is shown below.

V.

Fw

Figure C-2. Front Wind Loading — Simplified Model
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ZFx=0=—FW+Fa—1~;

Fy =F, — F (Eqn.1)

D My =0=Fylly + L) = Rl + L)

_ By +Ly)

= Lo+ L) (Eqn.2)

Sub Eqn. 2 into Eqn. 1

_EBEWr+Ly)
YLyt L) T

L. +1L,
E,=FE -1
W r[(LW+La) ]

(Lr + Lw) - (LW + La)
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FW:E[

_ F;"(Lr - La)
Yo (L + L)

(Eqn.3)
zMa =0=F,(Ly + L) —E(Ly — Lg)

_F;‘(Lr_La) E 4
Gy Y

Eqn.3 is equal to Eqn.4 v

> My =0=Fy(Ly + 1)~ Falle — L)

_ Fa(Lr - La)

w = —(Lw L) (Eqn.5)



Sub Eqn.5 into Eqn. 1

Fa(Lr B La) _
Ly +L) °

(Lr - La)
(Lw + Lr)

—F,

F=FE -

_ (Lr - La)
E‘&F‘@Ww»

_ (Lw + Lr) - (Lr - La)
Al e l

_ Fa(lw + La)
T Lw L)

_ B +Ly)

“ =W, Ly O

Eqn.2 is equal to Eqn.6 v
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- Lw
—--Fw(La+Lw)

Lr Fa|Y

r Fr ( Fr Mr

\Fr(Lr-La)

Ma

N

Figure C-3. Simplified Front Wind Loading Shear and Moment Diagrams

0=—-F,(Lg +Ly) + E(L, — Lg)
Ey(Lg + Ly) = E(Ly — Lg)

_ E"(Lr - La)

W=, v T

Eqn.7 is equal to Eqn.4 v

Mg = Fi(Lg + L)

Mg = E(Ly — Lg)

F, = The Maximum Tension Force Imparted into Upper Anchors from Wind

M, = The Maximum Bending Moment from Wind
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Appendix D. Back Wind Loading
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fw Z V + - M +
L,
X
d " Fw(Lw)
Lw
;e * Fw Mr
—
Lb
e, [

1D | b Mb
\-FD(Lb)

Figure D-1. Back Wind Loading

Table D-1. Variable Definitions

Variable Definition
fw Wind Load Per Unit Length
Fw Total Effective Wind Load
Fb Tensile Force at Bottom Clamp
Fr Reaction Force at Top of Parapet
Hw Chain-Link Height
Lw Distance Between Center of Wind Load and Top of Parapet
Lb Distance Between Bottom Clamp and Top of Parapet

In this derivation the tensile force at the top clamp was neglected and only the

tensile force at the bottom clamp was considered to represent the worst case scenario.



First, the total effective wind load on the structure must be determined:

Hy,
fm@=m
0

Next, the centroid of the wind load can be determined:

218

(58)

(59)

(60)

Now, a simplified model of the system that represents the wind load as a point

load can be created and is shown below.

y
X
Fw W
Lw
r Fr
Lb
LiLb

Figure D-2. Back Wind Loading — Simplified Model
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ZFx:Osz+Fb—E

E, =F —F, (Eqn.1)

ZMW =0=-FL, +F (L, +Ly,)

F-Ly

Fr=—
P 7 Ly + Ly)

(Eqn.2)

Sub Eqn.2 into Eqn. 1

FLy,
F =F ——

LW
F =F. |1l - ———
w r[ (Lb+LW)]

L,+L,)—L
E,=FE (L +Lp) = Ly

(Lb+LW)

E.Lp

E,=——— (Eqn.3
W= L 1 Ly )

ZMT = O = _FWLW +FbLb

F,L
Fy = Z > (Eqn.4)

w

Sub Eqn. 4 into Eqn. 1

Fyl
blo _p _p,
w
Fyl
F=—"+F,
Ly,

Lb
E=F, L—+1
w
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L, +1L
Fr:Fb( wa)
F—F( Lw ) Eqn.5

Eqn.5 is equal to Eqn.2 v

D My =0=-F,(Ly + L)+ L,

F o F.Lp
v (Lw +Lb)

Eqn.6 is equal to Eqn.3 v
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- V + -
y
X
Fw N
Fw(Lw)
Lw 2
r Fr
Lb Fr
Fb b \
i \-Fb(Lb)

Figure D-3. Simplified Back Wind Loading Shear and Moment Diagrams

0 =F,(Ly) — Fp(Lp)

_ Byl

F
w LW

Eqn.7 is equal to Eqn. 4

M, = E,L,

M, = FyL,

Mw

Mb

Mr
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Appendix E. Dead Load
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Fr

Figure E-1. Dead Load Configuration

Table E-1. Variable Definitions

Variable Definition
W Weight of Dead Load
Fr Reaction Force due to Dead Load
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F. = Shear Force Imparted into Horizontal Bolts
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Appendix F.  Chain Link Area Determination
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Figure F-1. Chain-Link Representation

Table F-1. Variable Definitions

Variable Definition

d Diamater of Chain-Link

S Chain-Link Mesh Size

A Total Area in One Link
A, Surface Area in One Link

P Percent of Area Exposed to Wind in One Link
A¢ Area of Fence Section

A, Total Chain Link Area per Fence Section

H Fence Height

L Fence Section Length
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Al = (S + d)Z

A, = 4d(S + d)

Am

p="=
Ay

A, = PHL
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Appendix G. Material Specifications



Table G-1. Bill of Materials, Test Nos. P3G-1 Through P3G-16
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Item

No QTY. Description Material Spec Reference
al | 1 | HSS8"x67x3/16"x84” Long Tube | ~STM %5633 CradeB | |14n76506
a2 1 | HSS 8”x8"x3/16"x84” Long Tube | ™M %533 GradeB | 140181456
a3 | 1 | HSS8"x6"x3/167x108” Long Tube | ST %5633 CradeB | 14776506
a4 | 1 | HSS8”x8”x3/16°x108” Long Tube | “°'M %533 GradeB | 140181456
a5 | 1 | HSS8"x6"x3/167x132” Long Tube | ST %533 CradeB | |14n76506
a6 1 | HSS 87x87x3/16°x132” Long Tube | '™ AG5£3 GradeB | 140181456
a7 | 1 | HSS8x4”x3/16°x110” Long Tube | “°'M %5‘,38 Grade B | |14650620
a8 | 1 |HSS8x4"x3/167x122 Long Tube | ASTMAS0Grade B 15067
a9 | 1 | HSS8"x4”x3/167x134” Long Tube | “°'M %5‘,38 Grade B | |14650620
a0 | 1 | HSS&x4"x3/16"72 Long Tube | “STM A0 CradeB | | 14650620
No. 40 Sieve-51% min.
pass
No. 200 Sieve-10% max | SMT R#16-
d1 - AASHTO A-3 Sand hass 236/16.40
Plasticity Index-NP Fine
Sand
d2 - Standard Strong Soil AASHTO ||\3A147 Grade
Table G-2. Bill of Materials, Test Nos. P3G-17 Through P3G-23
Item . .
No. QTY. Description Material Spec Reference
oo R#16-645
bl 1 HSS 8"x8"x3/8"x84" Long Tube | ASTM A500 Grade B H#824011
et e R#16-645
b2 1 HSS 8"x6"x3/8"x108" Long Tube | ASTM A500 Grade B HA#Y25146
/et (e R#16-645
b3 1 | HSS 8"x8"x3/8"x108" Long Tube | ASTM A500 Grade B | luoo o7
e/ 2 R#16-645
b4 1 HSS 8"x6"x3/8"x132" Long Tube | ASTM A500 Grade B HA#Y25146
/et 2 R#16-645
b5 1 | HSS 8"x8"x3/8"x132" Long Tube | ASTM A500 Grade B | luoo o7
b6 1 HSS 8"x4""x3/8"x122" Long Tube | ASTM A500 Grade B R#16-645

H#W23427
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y Aty 2/QN " R#16-645
b7 HSS 8"x4'"'x3/8"x134" Long Tube | ASTM A500 Grade B HH#W23427
No. 40 Sieve-51% min.
pass No. 200 Sieve- i
d1 AASHTO A-3 Sand 10% max. pass F;illgi‘f;%/
Plasticity Index-NP
Fine Sand
4 Standard Strong Soil AASHTO M147 Grade | Sieve Report
B provided
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NORFOLK TRON ‘;t METAL CO.
03/25/2016

NORFOLK IRON NORFOLK M.T.R. Cover Sheet METALWORKS INC
3001 N VICTORY RD 301 P STREET BLDG B
NORFOLK, NE 68702 LINCOLN, NE 68508

Sales Order 01113397
Customer PO: 15906

Certifications For The Material You Ordered Are Listed Below
Thank You For Your Business

Heat Item Item Description Width Length

0181456 23441 TUBE 8x 8x 3/16 ASO0B .0000 240.0000
A76506 01203 TUBE 8x 6x 3/16 A500B .0000 240.0000
659620 01185 TUBE 8x 4x 3/16 A5S00B .0000 240.0000

NSRI PHASE Il STEEL TUBES
R#16-497 March 2016 SMT

# % * End Of Page * * *

Figure G-1. 8-in. Square x 3/s-in. Steel Tubes, Test Nos. P3G-1 Through P3G-16
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BULL MOOSE TUBE ELKHART FACILITY 09/08/15
BULL MOOSE CERTIFICATION OF TESTS Page 1 of 1
EN 10204:2004 TYPE 3.1 CERT
TUBE
1819 Clarkson Rd
Cheslerfield, Missouri 63017
BLT0 Nk el vy SHPTO. ALl (0
Norfolk NE 68701 Emporia KS 668019788

B/L Number 359323 Ship Via J244 1737

8" X 6" X 0.187 HR X 40" Order # 503891

152.4 X 203.2 mm Ladle Analysis and Physicals Purchase Order # 04009961

ASTM A500-13 GRADEB & C Item # 101384 3844

Customer ltem # 01208
Raw Material is of Domestic Origin - Melted and Manufactured in the USA
Heat# = A76506 P NG

c MN 2 &) AL Si CB cu CR NV MO B T N CEVYLDpsi TSNpsi ELN%
060 450 009 002 031 030 014 090 .060 040 .002 020 0000 001 006 165 56830 64380 33

10" X 6" X 0.250 HR X 40° Order # 503891
152.4 X 254.0 mm Ladle Analysis and Physicals Purchase Order # 04009961
ASTM A500-13 GRADEB & C Item # 101412 3848
Customer ltem # 01240
Raw Material is of Domaestic Origin - Melted and Manufactured in the USA
Heat #= C74870 P NG

c MN P S AL Si CB cu CR NV MO B T N CE YLDpsi TSNpsi ELN%
190 650 .009 002 026 .030 0000 .080 060 .040 .001 0000 0000 00000000 324 62435 75410 32

5" SQ X 0.250 HR X 40’ Order # 503891
127.0 mm Ladle Analysis and Physicals Purchase Order # 04009961
ASTM AS500-13 GRADEB & C tem # 100262 3200
Customer ltem # 01091
Raw Material is of Domestic Origin - Melted and Manufactured in the USA
Heat #= S63002 P NG

c MN P S AL 8 cB cu CR NV MO 8 T N CE YiDpsi TSNpsi ELN%
070 .710 012 011 054 012 .038 .010 .040 0.000 0.000 001 0000 0000 003 .199 67210 75620 3

6" SQ X 0.250 HR X 40" Order # 503891
152.4 mm Ladle Analysis and Physicais Purchase Order # 04009961
ASTM A500-13 GRADEB & C Item # 100272 3840
Customer Item # 01218
Raw Material is of Domestic Origin - Melted and Manufactured in the USA
Heat#= T1904 P NG

(o] MN P S AL Si cB cu CR NV MO 8 M N CE YLDpsi TSNpsi ELN%
050 620 009 011 037 012 025 140 .060 .060 .002 .020 0.000 .007 .008 .185 62300 71330 34

Quality Manager: R b7~ /darlun ot

THIS WELDED STEEL TUBING IS MANUFACTURED IN THE UNITED STATES OF AMERICA AND
HAS BEEN PRODUCED IN ACCORDANCE WITH THE STATED SPECIFICATION. LADLE
CHEMISTRIES ARE REPORTED FROM DOCUMENTS PROVIDED BY THE SUPPLYING STEEL MILL.
ANY PHYSICAL AND MECHANICAL TESTING RESULTS SHOWN ON TH!S CERTIFICATION ARE
CORRECT AS CONTAINED IN THE RECORDS OF THE COMPANY.

Figure G-2. 8-in. x 6-in. X */ys-in. Steel Tube, Test Nos. P3G-1 Through P3G-23



BULL MOOSE TUBE ELKHART FACILITY 12181156
. CERTIFICATION OF TESTS Page 10f 2
BULL MOOSE & 102042004 TYPE 3.1 CERT
1818 Clarkson Rd TUBE
Chesterfield, Missouri 63017
BILLTO 39’“3‘;"’,“1 ggMetnl Company SHIP TO g&%o&lcr&ny &Rhélgal Company (NE)
Norfolk NE 68701 Norfolk NE  68701-0000
B/L Number 368106 Ship Via M5015_RN217T
8" X 6" X 0.187 HR X 48' Order # 512722
152.4 X 203.2 mm Ladle Analysis and Physicals Purchase Order # 01019048
ASTM A500-13 GRADEB&C Structural-Dual Certified tem # 101385 3844
Customer Item #
Raw Materlal Is of Domestic Origin - Melted and Manufactured in the USA
Heat#= A76506 P NG
c MN P N AL SI cB cy CR NV MO B T N CE YLDpsi TSNpsi ELN%
060 450 009 002 031 .030 .014 .09b .060 040 002 .020 0000 .001 .006 165 56830 64380 33
3" X 2" X 0.250 HR X 20’ Order # 512704
50.8 X 76.2 mm Ladle Analysis and Physicals Purchase Order # 01019048
ASTM A500-13 GRADEB & C Structural-Dual Certifled Item # 102011 1284
Customer Item # 00969
Raw Material is of Domestic Origin - Melted and Manufactured in the USA
Heat#= T03337 P NG
c MN P S AL N ] cu CR NV MO B T N CE YLDpsi TSNpsi ELN%
090 .650 .013 .008 .039 .013 001 .010 .040 .010 .097 .007 0000 007 .006 .231 54270 71330 32
12" SQ X 0.250 HR X 48" Order # §12731
304.8 mm Ladle Analysis and Physicals Purchase Order # 01018048
ASTM A500-13 GRADEB & C Structural-Dual Certifled Item # 108321 7680
Customer item #
Raw Material is of Domestic Origin - Melted and Manufactured in the USA
Heat#= T3019 P NG
Cc MN P ) AL S C8 cy CR NGV MO 8 T N CE YLDpsi TSNpsi ELN%
060 640 011 002 029 023 .027 .140 .070 070 .003 .020 0.000 .001 .007 203 66540 73860 32
12" SQ X 0.250 HR X 48" Order # 512731
304.8 mm Ladle Analysis and Physlcals Purchase Order # 01019048
ASTM AS500-13 GRADEB & C Structural-Dual Certified Item # 108321 7680
Customer Item #
Raw Materlal is of Domestic Origin - Melted and Manufactured in the USA
Heat#= T3159 P NG
(o] MN P S AL ] Cil CR NV MO B T N CE YLDpsi TSNpsi ELN%
71760 33

.060 630 .00 .010 034 .02¢ 022 140 .070 .120 .002 020 0.000 .001 .007 .205 63110

Quality Manager. S(Z(( Aowedt

. THIS WELDED STEEL TUBING IS MANUFACTURED IN THE UNITED STATES OF AMERICA AND
HAS BEEN PRODUCED IN ACCORDANCE WITH THE STATED SPECIFICATION. LADLE
CHEMISTRIES ARE REPORTED FROM DOCUMENTS PROVIDED BY THE SUPPLYING STEEL MILL.
ANY PHYSICAL AND MECHANICAL TESTING RESULTS SHOWN ON THIS CERTIFICATION ARE
CORRECT AS CONTAINED IN THE RECORDS OF THE COMPANY.
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Figure G-3. 8-in. x 6-in. X ¥s-in. Tubes, Test Nos. P3G-1 through P3G-23
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g -

MARUICHI LEAUITT
Ty RN 2

PPt AND TUBE

BLNo. . SH0000042509
Destjnation
Supplier

MATERIAL TEST REPORT
ORIGINAL

M/C No.  MC0000036894
Date 03/0 16

MARUICHI LEAVITT PIPE & TUBE, LLC
1717 W. 115th St.
Chicago, IL 60643

TEL: (773) 239-7700 FAX: (773) 239-1023

SPEC _Mnm M_ Chemical Composition(Ladle Analysis) Tensile Test Hﬂnﬂm__u_a wo«:hﬂ_u il
e S = HeatNo | iy ) | | 01 | 00 BHEEE e | Teeake _m.msa T v Remats
Customer PO No. / Customer item No. WHLBS) _Mo .wo 100 AWS :woo :mo :wao _oxS _%8 .%3 (Psi) (PS) 4_ (%) | Result L
| 1|ASTM A500/A500M-13 GRADE B ERW TUBING 6 (821504140 [18 | 1| 76 [12 | 5 |16 [10 |20 | 4 | 1 |67,730 | 76,314 | 30 T | sA0000098852

5IN x 5IN x 0.375IN x 48FT HRB 6.442 . A500 Grade B/C
01019582 / 31835 |

2|ASTM A500/A500M-13 GRADE B ERW TUBING | 6822535110 |20 | 1| 82 |11 | 7 |20 |10 |30 | 4 | 2 |59,134 | 76,720 | 31 SA0000098862
5IN x 5IN x 0.375IN x 48FT HRB 6,442 A500 Grade B/C
01019582 / 31835

3|ASTM A500/A500M-13 GRADE B ERW TUBING | 6 |0179212 |18 | 1 | 80 | 8 [10 [70 |20 [40 [10 | 0 [55.621 |69.405 | 33 N SA0000098862
6IN x 6IN x 0.313IN x 40FT HRB 5,602 A500 Grade B/C
01019582/ 01227

4!/ASTM A500/AS00M-13 GRADE B ERW TUBING 48659620 16| 2| 80| 7| 620 |20 |20 [20 | 8 [56,480 | 65,449 | 31 SA0000098862
8IN x 4IN x 0.188IN x 20FT HRB 13,952 AS00 Grade B/C
01019582 /01185 — T

5[ASTM A500/A500M-13 GRADE B ERW TUBING | 18 [A46782 (20 | 3 | 75 (12| 2 |10 |10 |30 | 4 | 1 |64,517 |80,974 | 29 SA0000098862
8IN X 4IN x 0.250IN x 20FT HRB 6,848 A500 Grade B/C
01019582 / 01192

“6|ASTM A500/A500M-13 GRADE B ERW TUBING | 18 |B38101 2037810 22050 (30| 4| 1|61666 |72.396 | 26 [ sA0000098862
8IN x 4IN x 0.250IN x 24FT HRB 8,216 _ AS00 Grade B/C
01019582 /01196 | )

Made and Melted in The U.S.A.

This material has not come in direct contact with mercury during the manufacturing or testing

We hereby certify that the material described herein

conforms fully to the said specification.

processes. No Weld Repair.
Remarks:

i

- ——

Maruichi Leavitt Pipe & Tube, LLC

F-824-101 - Rev.0

Figure G-4. 8-in. X 4-in. X 3/ie-in. Steel Tubes, Test Nos. P3G-1 through P3G-16
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MATERIAL TEST REPORT MC No.  MCO000031072
PPt ANG 1UBK ORIGINAL Date 05/21/2015
BL No. SH0000035763
Destination ~ NORFOLK IRON&METAL - EMPORIAKS MARUICHI LEAVITT PIPE & TUBE, LLC
Supplier 1717 W. 115th St.
Chicago, IL 60643
TEL: (773) 239-7700 FAX: (773) 239-1023
SPEC -“Mun“ | Chemicat Composition(Ladle Analysis) Tensile Test JIENM»_E wuq:nm_.an
I ... ST L E S5 A | Te
| =t i i oo b Mol | o0 | 0| o | oo | 00| e B s B L lxmvwm,ﬂ ases] - Bematks
Customer PO No. / Customer ltem No WHLBS) ,ﬂc _ws { 100 :wS :wce Eﬂe Sﬂa .MS _axoo _ovwo (Psh (PSh) | (%) | Result Test
7|ASTM A500/A500M-13 GRADE 8 ERW TUBING 6lots14s6 |17 | 3| 66| 9| 7 50 |10 |40 |10 | O 63158 |75612 | 27 | SA0000085433 |
8IN x 8IN x 0.18BIN x 40FT HRB 4712 A500 Grade B/C
04009389 / 20954
ﬂqugﬁmao\>mooz.ﬂw GRADE B ERW TUBING 6 y_‘ﬁ% 19 1| 79 12| 6 40 [10 |30 (10 | 0 |57,865 [67.381 | 31 | ~ [SA0000085433 |
{8IN x 4IN x 0.375IN x 40FT HRB 6,596 A500 Grade BIC
04009389 / 01201
9|ASTM A500/A500M-13 GRADE B ERW TUBING afo112161 19| 1| 83 |10 | 6 |30 |10 30 [10 | O |54,649 63,149 | 34 " |'sA0000085433
6IN x 6N x 0.500IN x 20FT HRB 2,820 , A500 Grade B/C
04009389 / 04866 ”
10/ASTM A5DD/A500M-13 GRADE B ERW TUBING 60112163 |18 | 1| 81 (10 | 7 |30 |20 |30 [10 | 0 |57.248 {67,519 | 35 1 SA0000085433
6IN x 6IN x 0.375IN x 40FT HRB 6,596 { A500 Grade B/C
04009389 / 04865 | T
- _ 2 e A | ]

We hereby certify that the material described herein

Made and Meited in The U.S.A. .
conforms fully to the said specification.

This material has not come in direct contact with mercury during the manufacturing or testing
processes. No Weld Repair.

Remarks:

Maruichi Leavitt Pipe & Tube, LLC
F-824-101 - Rev.0

Figure G-5. 8-in. Square x 3/s-in. Tubes, Test Nos. P3G-1 through P3G-16
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G Plant (Wann) - Saunders County

Western Sand & Gravel Company

Typical Material Analysis
(All values shown as cumulative % retained)

Northeast 1/4 Section 31 Township 14 North Range 10 East

>

11/2" 1" 3/4" 58" 12" 3/8"

#4

#8

#10

#16_ #30

#50  #100  #200 |

Masonry Sand

Average

84 99 100

Figure G-6. Sand, Test Nos. P3G-1 through P3G-23



/////am_ REMERS KAUFMAN CONCRETE PRODUCTS CO.

- ( 6200 Cornhusker Highway, Lincoln, NE 68529 " .
A /////I 402-434-1855 Fax: 402-434-1877 Delivery Ticket Driver: KEN H.
www.ReimersKaufman.com Trucks#:
g Ordered By:
Bill To: ’ . Ship To: S . Ship From: e
91121 UNL LANDSCAPING DEPARTMENT 2005 MIDWEST ROADSIDE SAFETY FAC REIMERS KAUFMAN CONCRETE PROD
ATTN ACCOUNTING DEPT 4630 N/W 36TH ST 6200 CORNHUSKER HWY
1340 N 17TH ST LINCOLN NE 68507
LINCOLN NE 68508-126
Waiver: ived | below in d: with order. Purch or
nub:» waives all claims for p: d by

seller’s truck when no=<!.< is :.uno uo<o=n the street curb line.

PULL
D0 NOT MAIL TO CUSTOMER, SEND TO SITE

Order Number: SP 1675783 522310 Delivery Date: 03/21/16 Customer PO Number:

- Uni

Received by Print Name/Company
Retumns:  No returns wio invoice. No returns on unusable material, seconds, Tax Code:RKNTE Nebraska Tax Exempt
all special order r ials, and fractional units. All
returnable materials mcgoo. to 50% %_S charge. No returns accepted Shipment Weight: 28,500.00

Shipment Cubic:

Terms: Al invoices must be paid within 30 days of invoice. Past due accounts will
an interest rate of 1.33% per month which is 16%

Document: Print Date: 03/21/16 Print Time: 11:47 Page: 1 tomw

1 through P3G-23

P3G-

Figure G-7. Sand, Test Nos.



Atlas ABC Corp (Atlas Tube Chi Don
1855 East 127nd Street o DDD Ref.B/L: 80705090
Chicago, lllinois, USA U Date: 02,24.2016
60633 Customer: 179
Tel:  773-646-4500 O mcsreeL Group
Fax:  773-646-6128
MATERIAL TEST REPORT
Sold to ,
S0id to Shipped to
Steel & Pipe Supply Compal
PO Box iGkg e lampen Stes! & Pipe Supply Compan
MANHATTAN K ew Century Parkway
USA 8 esen NEW CENTURY KS 66031
USA
Material: 8.0x4.0x375x20'0"0(2x5). Material No: 800403752000 Made in: USA
Melted in: USA
Sales order: 1070149 Purchase Order: 4500259967 Cust Material #: 6680040037520
Heat No c Mn P S AS! Al Cu Cb Mo Ni Cr v Ti B N
W23427 0.180 0.800 0.008 0.007 0.015 0053 0.010 0.005 0003 0.010 0.030 0.001 0.001 0.000 0.005
Bundle No PCs  Yield Tensile Eln.2in Certification CE: 0.32
M800615987 10 065817 Psi 078912 Psi 33 % ASTM A500-13 GRADE B&C
Material Note:
Sales Or.Note:
Material: 8.0x4.0x375x20'0"0(2x5. Material No: 800403752000 Made in: USA
Melted in: USA
Sales order: 1070149 Purchase Order: 4500259967 Cust Material #: 6680040037520
Heat No c Mn P S Si Al Cu Cb Mo Ni Cr \4 Ti B N
W23427 ' 0.180 0.800 0.008 0.007 0.016 0:053 0.010 0.005 0.003 0.010 0.030 0.001 0.001 0.000 0.005
Bundle No PCs  Yield Tensile Eln.2in Certification CE: 0.32
M800615988 10‘ 065817 Psi 078912 Psi 33 % ASTM A500-13 GRADE B&C
Material Note:
Sales Or.Note:
Material: 10.0x2.0x250x40'0"0(2x4). Material No: 1000202504000 Made in: USA
Melted in: USA
Sales order: 1069603 Purchase Order: 45002598905 Cust Material #: 66100020025040
Heat No Cc Mn P S Si Al Cu Cb Mo Ni Cr v Ti B N
266012 0.200 0.650 0.008 0.005 0.020 0.030 0.099 0.001 0.020 0.040 0.050 0.003 0.002 0.000 0.007
Bundle No PCs  Yield Tensile Ein.2in Certification CE: 0.34
M800615918 8 051769 Psi 067325 Psi 34 % ASTM A500-13 GRADE B&C

Material Note:
Sales Or.Note:

Authorized by Quality Assurance:

specification and contract requirements.
Wm S D1.1 method.

4 OF NORTH AMERICA

y..,.e.J(.J

The results reported on this report represent the actual attributes of the material fi

and ind full liance with all applicable

@ Metals Service Center Institute

Page : 2 0f 4

Figure G-8. 8-in. x 4-in. x %-in. Tube, Test Nos P3G-17 through P3G-23
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Anas ARC Cu.p (Atlags Tube Chicago)
1855 Cast 122nd Street

Chicago, llinois, USA

60633

el: 773-646 4500

Fax: 7736466128

Sold to

Steel & Pipe Supply Compan
PO B g pPply 3]

00 JwmcsteeL crour

MATERIAL TEST REPORT

Atlas 7ube

Shipped to

Sleel & Pipe Suppl
1020 Wes‘t) Fortpgé

Ref.B/L: 80706896
Date: 03.09.2016
Customer: 179

Compan

ibson

MANHATTAN KS 66505 CATOOSA OK 74015
USA USA

Material: 8.0!5.0:375):40'0‘0(213): Material No: 800803754000 Made in:  USA

Melted in: USA
Sales order: 1075626 Purchase Order: C450005637 Cust Material #: 6680060037540
Heat No Cc Mn P Si Al Cu Cb Mo Ni Cr ' Ti B N
¥25146 . 0180 079 0.005 0.005 0.013 0©.058 0.020 0.004 0005 O001C 0030 0001 0001 0.000 0.006
Bundle No PCs  Yield Tensile Eln Zm Certification CE: 0.32
MB00608387 6 064868 Psi 076207 Psi 33 % ASTM A500.13 GRADE B&C
Material Note:
Sales Or.Note:
Material: 8.0x6.0x500x20°0"0{2x3} Material No: 800605002000 Made in:  USA

Melted in: USA
Sales order: 1075627 Purchase Order: C450005637 Cust Material #: 6680060050020
Heat No Cc Mn P Si Al Cu Ch Mo Ni Cr v Ti B N
A46596 0.190 0.770 0.008 0.001 0030 0.038 0010 000! 0004 0010 0020 0000 ”0 002 0000 0008
Bundle No PCs Yield Tensile Eln 2|n Certification CE: 0.33
M800616895 6 059021 Psi 068700 Psi 32 % ASTM A500-13 GRADE B&C
Material Note:
Sales Or.Note:
Material: 12.0x4.0x375x40'0"0(2x3). Material No: 1200403754000 Made in: USA

Melted in: USA
Sales order: 1075624 Purchase Order: C450005637 Cust Material #: 66120040037540
Hoal No Cc Mn P Si Al Cu Ch Mo Ni Cr v Ti B N
108056 0190 0760 0008 0006 0016 0081 0020 0005 0006 0010 0030 G001 0001 0000 0005
Bundle No PCs Yield Tensile Eln 2m Certification CE: 0.33
M900825038 6 062688 Psi 077947 Psi 33 % ASTM A500-13 GRADE B&C
Material Note:
Sales Or.Note:
Authorized by Quality Assurance: :
The rosults reported on this report represent the actual attributes of the material furnished and ind full li with all licabl

specification and contract requirements.

lﬂm“ms D1.1 method
() Institute

0F NOR K AMERICS

Page : 3 0Of 3

@ Metals Service Center Institute

Figure G-9. 8-in. x 6-in. x %-in. Tube, Test Nos. P3G-17 through P3G-23
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o Atas Tubo Canads ULC 000 Atlas 7— b RefBIL: 80700594
n;go;véoomario, Canada unn u e C:tsgomer ?;.927.2016
NOR1G0 o san 000 uuc STEEL GROUP
Fax: 519.738-3537

MATERIAL TEST REPORT
Sold to

Shipped to
g&ee'&f"( ';'ggss”pply Compan Steel & Pupe Suppl; Compan
MANHATTAN KS 66505 o1 New Century Parkway
USA NEW CENTURY KS 66031
USA
Material: 8.0x8.0x375x40'0"0(3x2). Material No! 800803754000 Made in: Canada
Melted in: Canada
Sales order: 1064256 Purchase Order: C455002220 Cust Material #: 6580037540
Heat No Cc Mn P S Si Al Cu Cb Mo Ni Cr v Ti B N
824011 0.200 0.800 0.011 0.007 0.012 0.040 0.038 0.006 0.002 0.011 0.035 0.002 0.002 0.000 0.004
Bundle No PCs  Yield Tensile Eln.2in Certification CE: 0.35
M201099577 6 063136 Psi 074151 Psi 35.1 % ASTM A500-13 GRADE B&C
Material Note:
Sales Or.Note:
T
Material: 12.0x12.0x500x40'0"0(2x1). Material No: 1201205004000 Made in: Canada
Melted in: Canada
Sales order: 1084256 Purchase Order: C455002220 Cust_Material_#:__65120050040 -
Heat No c Mn P ) Si Al ¢ Cu Cb Mo Ni Cr v Ti B N
824111 0.200 0.800 0.013 0.010 0.019 0.038 0.036 0.006 0.003 0.014 0.036 0.002 0.002 0.000 0.004
Bundle No PCs  Yield Tensile Eln.2in Certification CE: 0.35
M201100604 2 067867 Psi 067582 Psi 40.3 % ASTM A500-13 GRADE B&C
Material Note:
Sales Or.Note:
Material: 2.0x2.0x250x20'0"0(10x5).-D Material No: 0200202502000-D Made in: USA
Melted in: Canada
Sales order: 1063861 Purchase Order: C455002217 Cust Material #: 6520025020
Heat No Cc Mn P S Si ) Al Cu Cb Mo Ni Cr v Ti B N
823638 0.170 0.800 0.013 0.009 0.015 0.059 0.057 0.002 0.003 0.015 0.038 0.002 0.002 0.000 0.000
Bundle No PCs  Yield Tensile Ein.2in Certification CE: 0.32
M300889373 50 073391 Psi 086298 Psi 24.7 % ASTM A500-13 GRADE B&C
Material Note:

Sales Or.Note:

.;ason Richard

Authorized by Quality Assurance:

The results reported on this report represent the actual annbutos of the material furnished and indicate full compliance with all applicable
specification and contract requirements. ,

CE calculated using the AWS D1.1 method.

78\ Steel Tube L ® Metals Service Center Institute

4 OF NORTH AMBRICA

Figure G-10. 8-in. x 8-in. x %-in. Tube, Test Nos. P3G-17 through P3G-23
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Appendix H. Bogie Test Results

The results of the recorded data from each accelerometer for every dynamic bogie
test are provided in the summary sheets found in this appendix. Summary sheets include
acceleration, velocity, and deflection vs. time plots as well as force vs. deflection and

energy vs. deflection plots.
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MIDWEST ROADSIDE SAFETY FACILITY

Bogie Test Summary

Test Information

Test Results Summary

Test Description: 8x6x3/16 tube w 48-in. embedment in weak soil Event Duration: 0.1860 sec
Test Number: P3G-1 Max. Deflection: 68.4 in.
Test Date: 5/12/2016 Peak Force: 27.2 k
Failure Type: Soil shear and post rotation out of soil Initial Linear Stiffness: 12.5 kfin.
Total Energy: 234.2 k-in.
Post Properties
Post Type: Steel tube @5" @ 10" @ I5" @207
Post Size: 8x6x3/16 AVerage Force (K) 12.80 7.96 6.43 5.66
Post Length: 84in. Energy (k-in.) 64.0 79.6 96.4 113.3
Embedment Depth: 481n.
Orientation: Strong-Axis 16 Bogie Acceleration vs. Time
Soil Properties 14
Gradation: AASHTO Weak Soil L
Moisture Content: 10
Compaction Method: ~ Compactor-tamped in 12-in. lifts =
2 8
Bogie Properties s 6
Impact Velocity: 25.5 mph (37.411t5s) 2
Impact Height: 25in. g 4 A
Bogie Mass: 1876 Ib 2 ™M V.\V.VA\/\,\“ IA\
. 0 R
Data Acquired N/
Accelerometer: SLICE-1 2
Camera Data: GoPros, AOS-8 Perpendicular 0 0.05 0.1 0.15 0.2
Time (s)
jﬁorce vs. Deflection At Impact Location a5 Bogie Velocity vs. Time
25 40
35 -
on \
v ~ 30
J ———
3 15 £25
g 220
S 10 g 15
> AW\'\/-/\/\J\/\. A "o
o /\’\-\.-\/-\VA 5
0
5 -5
-20 0 20 40 60 8 0 0.05 0.1 0.15 0.2
Deflection (in.) Time (s)
250 Energy vs. Deflection At Impact Location 80 Deflection at Impact Location vs. Time
/ 70
200
~ 60 //
£ 150 / £50 P
= 5 /
: -~
5 100 - 3
S / 330
50 20 e
10
0 0
0 20 40 60 80 0 0.05 0.1 0.15 0.2
Deflection (in.) Time (s)

Figure H-1. Test No. P3G-1 Results (SLICE-1)
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MIDWEST ROADSIDE SAFETY FACILITY

Bogie Test Summary

Test Information Test Results Summary
Test Description: 8x6x3/16 tube w 48-in. embedment in weak soil Event Duration: 0.1860 sec
Test Number: P3G-1 Max. Deflection: 68.2 in.
Test Date: 5/12/2016 Peak Force: 26.8 k
Failure Type: Soil shear and post rotation out of soil Initial Linear Stiffness: 12.3 kfin.
Total Energy: 240.9 k-in.
Post Properties
Post Type: Steel tube @ 5" @ 107 @ IS5 @207
Post Size: 8x6x3/16 Average Force (k) 12.57 7.87 6.41 560
Post Length: 84in. Energy (k-in.) 62.8 78.7 96.1 113.9
Embedment Depth: 481n.
Orientation: Strong-Axis 16 Bogie Acceleration vs. Time
Soil Properties 14
Gradation: AASHTO Weak Soil L
Moisture Content: 10
Compaction Method: ~ Compactor-tamped in 12-in. lifts =
S 8
Bogie Properties s 6
Impact Velocity: 25.5 mph (37.411t5s) 2
Impact Height: 25in. g 4 A
Bogie Mass: 1876 Ib 2 AN VA\J\I\AF\ 1.\
Data Acquired 0 ~
Accelerometer: SLICE-2 2
Camera Data: GoPros, AOS-8 Perpendicular 0 0.05 0.1 0.15 0.2
Time (s)
jﬁorce vs. Deflection At Impact Location a5 Bogie Velocity vs. Time
. 40
35 ¥\
20 30 e ——
Q S
2 15 g2
8 220
S 10 8
e s 15
5 A > 10
\/"\/V"’V\-’\’\W\ l\ s
0 N
0
5 -5
20 0 20 40 60 80 0 0.05 0.1 0.15 02
Deflection (in.) Time (s)
300 Energy vs. Deflection At Impact Location 80 Deflection at Impact Location vs. Time
250 0
/’ 60 - /
i = £ 50 ~
< e 5 _
> 150 2 40
o o
@ / 9
& 100 -~ &30
/ 20
50 /
10
0 0
0 20 40 60 80 0 0.05 0.1 0.15 0.2
Deflection (in.) Time (s)

Figure H-2. Test No. P3G-1 Results (SLICE-2)
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MIDWEST ROADSIDE SAFETY FACILITY

Bogie Test Summary

Test Information Test Results Summary
Test Description: 8x8x3/16 tube w 48-in. embedment in weak soil Event Duration: 0.1860 sec
Test Number: P3G-2 Max. Deflection: 74.9 in.
Test Date: 5/12/2016 Peak Force: 29.2 k
Failure Type: Post rotation Initial Linear Stiffness: 13.2 kfin.
Total Energy: 224.0 k-in.
Post Properties
Post Type: Steel tube @ 5" @ 107 @ IS5 @207
Post Size: 8x8x3/16 Average Force (k) 13.62 8.72 6.89 6.05
Post Length: 84in. Energy (k-in.) 68.1 87.2 103.4 121.0
Embedment Depth: 481n.
Orientation: Strong-Axis 18 Bogie Acceleration vs. Time
. . 16
Soil Properties
Gradation: AASHTO Weak Soil _u
Moisture Content: w12
Compaction Method: ‘é’ 10
Bogie Properties s 8
Impact Velocity: 27.06 mph (39.68 Tifs) 26
Impact Height: 25in. S 4 A
Bogie Mass: 1876 Ib < 2
V w NP A~
Data Acquired 0 W A
Accelerometer: SLICE-1 2
Camera Data: GoPros, AOS-8 Perpendicular 0 0.05 0.1 0.15 0.2
Time (s)
jgorce vs. Deflection At Impact Location 0 Bogie Velocity vs. Time
- 40
25 —
- 20 g 30
= £
8 15 Z 2
S %]
£ 10 4
> 10
SN A
V \'V'\""\/\-MFW-.—\A 0
5 -10
-20 0 20 40 60 80 0 0.05 0.1 0.15 02
Deflection (in.) Time (s)
250 Energy vs. Deflection At Impact Location 80 Deflection at Impact Location vs. Time
70 -
200 e
/ 60 ~
< _— £ 50 /
:_% 150 / = /
> 240 1
& yd 5 /
2 100 2 30
w O)
[}
/ . ) /
50 /
10
0 0
0 20 40 60 80 0 0.05 0.1 0.15 0.2
Deflection (in.) Time (s)

Figure H-3. Test No. P3G-2 Results (SLICE-1)
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MIDWEST ROADSIDE SAFETY FACILITY

Bogie Test Summary

Test Information Test Results Summary
Test Description: 8x8x3/16 tube w 48-in. embedment in weak soil Event Duration: 0.1860 sec
Test Number: P3G-2 Max. Deflection: 74.7 in.
Test Date: 5/12/2016 Peak Force: 284 k
Failure Type: Post rotation Initial Linear Stiffness: 13.1 kfin.
Total Energy: 226.0 k-in.
Post Properties
Post Type: Steel tube @5" @ 10" @ I5" @207
Post Size: 8x8x3/16 Average Force (k) 13.33 8.54 6.79 5.99
Post Length: 84in. Energy (k-in.) 66.7 85.4 101.9 119.8
Embedment Depth: 481n.
Orientation: Strong-Axis 16 Bogie Acceleration vs. Time
Soil Properties 14
Gradation: AASHTO Weak Soil L
Moisture Content: 10
Compaction Method: =
2 8
Bogie Properties S 6
Impact Velocity: 27.06 mph (39.68 Tifs) 2 .
Impact Height: 25in. S
Bogie Mass: 1876 Ib <, ,\VAW .
NN,
Data Acquired 0
Accelerometer: SLICE-2 2
Camera Data: GoPros, AOS-8 Perpendicular 0 0.05 0.1 0.15 0.2
Time (s)
jﬁorce vs. Deflection At Impact Location 0 Bogie Velocity vs. Time
25
i 40
" 7 30
= s
B3 15 E
g Z 20
S 10 8
: A A S 10
o ~_\l\" 0
5 -10
-20 0 20 40 60 8 0 0.05 0.1 0.15 0.2
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Figure H-4. Test No. P3G-2 Results (SLICE-2)
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Bogie Test Summary
Test Information Test Results Summary
Test Description: 8x6x3/16 tube w 72-in. embedment in weak soil Event Duration: 0.2720 sec
Test Number: P3G-3 Max. Deflection: 61.1 in.
Test Date: 5/13/2016 Peak Force: 27.1 k
Failure Type: Post rotation Initial Linear Stiffness: 10.8 kfin.
Total Energy: 509.1 k-in.
Post Properties
Post Type: Steel tube @ 5" @ 107 @ IS5 @207
Post Size: 8x6x3/16 Average Force (k) 17.92 11.59 10.09 9.66
Post Length: 108 in. Energy (k-in.) 89.6 115.9 151.3 193.2
Embedment Depth: 72in.
Orientation: Strong-Axis 16 Bogie Acceleration vs. Time
Soil Properties 14
Gradation: AASHTO Weak Soil L
Moisture Content: 10
Compaction Method: =
S 8
Bogie Properties S 6
Impact Velocity: 26.09 mph (38.27 fils) 2 A DA A A oA~
Impact Height: 25in. g 4 IV ViV V'V S~~~
Bogie Mass: 1876 Ib <, ™
Data Acquired 0
Accelerometer: SLICE-1 2
Camera Data: GoPros, AOS-8 Perpendicular 0.05 0.1 0.15 0.2 0.25 03
Time (s)
an Force vs. Deflection At Impact Location a5 Bogie Velocity vs. Time
40
25
\ 35
20 \ 30
= S5 N
% 15 :-; 20 N
o = \
510 g 15 ™
- \/ Vae el 310
5 l \ 5
0 0
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3 -10
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3 / c 40 e
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5 / @ 30
& 200 K
/ 8 5
P
100 10
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Deflection (in.) Time (s)

Figure H-5. Test No. P3G-3 Results (SLICE-1)
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MIDWEST ROADSIDE SAFETY FACILITY

Bogie Test Summary

Test Information Test Results Summary
Test Description: 8x6x3/16 tube w 72-in. embedment in weak soil Event Duration: 0.2720 sec
Test Number: P3G-3 Max. Deflection: 60.6 in.
Test Date: 5/13/2016 Peak Force: 26.5 k
Failure Type: Post rotation Initial Linear Stiffness: 11.2 kfin.
Total Energy: 509.2 k-in.
Post Properties
Post Type: Steel tube @ 5" @ 107 @ IS5 @207
Post Size: 8x6x3/16 Average Force (k) 17.89 11.58 10.09 9.70
Post Length: 108 in. Energy (k-in.) 89.5 115.8 151.3 194.0
Embedment Depth: 72in.
Orientation: Strong-Axis 16 Bogie Acceleration vs. Time
Soil Properties 14
Gradation: AASHTO Weak Soil L
Moisture Content: 10
Compaction Method: =
S 8
Bogie Properties S 6
Impact Velocity: 26.09 mph (38.27 fils) 2 DA A A~
Impact Height: 25in. g 4 (VAR S ~—
Bogie Mass: 1876 Ib <, ™\
Data Acquired 0
Accelerometer: SLICE-2 2
Camera Data: GoPros, AOS-8 Perpendicular 0 0.05 0.1 0.15 0.2 0.25 03
Time (s)
an Force vs. Deflection At Impact Location a5 Bogie Velocity vs. Time
e 40
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Figure H-6. Test No. P3G-3 Results (SLICE-2)
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MIDWEST ROADSIDE SAFETY FACILITY

Bogie Test Summary

Test Information Test Results Summary
Test Description: 8x8x3/16 tube w 72-in. embedment in weak soil Event Duration: 0.2900 sec
Test Number: P3G-4 Max. Deflection: 61.9 in.
Test Date: 5/18/2016 Peak Force: 310 k
Failure Type: Post Rotation Initial Linear Stiffness: 13.4 kfin.
Total Energy: 526.3 k-in.
Post Properties
Post Type: Steel tube @5" @ 10" @ I5" @207
Post Size: 8x8x3/16 Average Force (k) 20.45 13.90 12.57 11.99
Post Length: 108 in. Energy (k-in.) 102.2 139.0 188.5 239.8
Embedment Depth: 72in.
Orientation: Strong-Axis 2 Bogie Acceleration vs. Time
Soil Properties \
Gradation: AASHTO Weak Soil b
Moisture Content: -u"'n
Compaction Method: T 10
2
Bogie Properties g \
Impact Velocity: 26.6 mph (39.01 tfs) 3 5 R pr—
Impact Height: 25in 8 V —— |
Bogie Mass: 1876 Ib < 0
Data Acquired
Accelerometer: SLICEL s 005 01 005 02 025 03 035
Camera Data: GoPros, AOS-9 Perpendicular Time (s)
35 Force vs. Deflection At Impact Location 45 Bogie Velocity vs. Time
30 40 \
\ 35
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315 Zz N
el om
* 10 "/ 3 10
\ AN > \\
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Figure H-7. Test No. P3G-4 Results (SLICE-1)




249

MIDWEST ROADSIDE SAFETY FACILITY

Bogie Test Summary

Test Information Test Results Summary
Test Description: 8x8x3/16 tube w 72-in. embedment in weak soil Event Duration: 0.2900 sec
Test Number: P3G-4 Max. Deflection: 60.9 in.
Test Date: 5/18/2016 Peak Force: 303 k
Failure Type: Post Rotation Initial Linear Stiffness: 13.3 kfin.
Total Energy: 527.4 k-in.
Post Properties
Post Type: Steel tube @ 5" @ 107 @ IS5 @207
Post Size: 8x8x3/16 Average Force (k) 20.22 13.84 12.58 12.07
Post Length: 108 in. Energy (k-in.) 101.1 138.4 188.7 241.4
Embedment Depth: 72in.
Orientation: Strong-Axis 18 Bogie Acceleration vs. Time
. . 16
Soil Properties
Gradation: AASHTO Weak Soil _u
Moisture Content: w12
Compaction Method: T 10
2
Bogie Properties g 8
Impact Velocity: 26.6 mph (39.01 ft/s) T 6 M
Impact Height: 25 in. S 4 /J'V\"‘\A‘, P,
Bogie Mass: 1876 Ib <, —
Data Acquired 0
Accelerometer: SLICE-2 2
Camera Data: GoPros, AOS-9 Perpendicular 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Time (s)
35 Force vs. Deflection At Impact Location 45 Bogie Velocity vs. Time
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Figure H-8. Test No. P3G-4 Results (SLICE-2)
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MIDWEST ROADSIDE SAFETY FACILITY

Bogie Test Summary

Test Information Test Results Summary
Test Description: 8x6x3/16 tube w 96-in. embedment in weak soil Event Duration: 0.2340 sec
Test Number: P3G-5 Max. Deflection: 32.0 in.
Test Date: 5/19/2016 Peak Force: 28.1 k
Failure Type: Post Rotation Initial Linear Stiffness: 11.9 kfin.
Total Energy: 508.2 k-in.
Post Properties
Post Type: Steel tube @ 5" @ 107 @ IS5 @207
Post Size: 8x6x3/16 Average Force (k) 20.04 18.68 17.74 17.38
Post Length: 1321in. Energy (k-in.) 100.2 186.8 266.1 347.6
Embedment Depth: 96 in.
Orientation: Strong-Axis 16 Bogie Acceleration vs. Time
Soil Properties 147
Gradation: AASHTO Weak Soil _n
Moisture Content: w10
Compaction Method: .5 . " N\‘\
Bogie Properties 8 ¢ ‘V\'\!‘N
Impact Velocity: 25.99 mph (3812 1ts) 2
Impact Height: 25in g 4 \
Bogie Mass: 1876 Ib < 2 \-
Data Acquired 0
Accelerometer: SLICE-1 2
Camera Data: GoPros, AOS-9 Perpendicular 0 0.05 0.1 0.15 0.2 0.25
Time (s)
30 Force vs. Deflection At Impact Location 45 Bogie Velocity vs. Time
40
I \ 35 \C
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Figure H-9. Test No. P3G-5 Results (SLICE-1)
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MIDWEST ROADSIDE SAFETY FACILITY

Bogie Test Summary

Test Information

Test Results Summary

Test Description: 8x6x3/16 tube w 96-in. embedment in weak soil Event Duration: 0.2340 sec
Test Number: P3G-5 Max. Deflection: 319 in.
Test Date: 5/19/2016 Peak Force: 275 k
Failure Type: Soil shear Initial Linear Stiffness: 11.9 kfin.
Total Energy: 508.2 k-in.
Post Properties
Post Type: Steel tube @5" @ 10" @ I5" @207
Post Size: 8x6x3/16 Average Force (k) 19.438 18.38 17.58 17.31
Post Length: 1321in. Energy (k-in.) 97.4 183.8 263.7 346.3
Embedment Depth: 96 in.
Orientation: Stong-Axis 16 Bogie Acceleration vs. Time
Soil Properties 147
Gradation: AASHTO Weak Soil _n
Moisture Content: -u"'n 10 ‘
Compaction Method: 5 . \\v‘N\
Bogie Properties I 6 W\IW
Impact Velocity: 25.99 mph (3812 1ts) 2
Impact Height: 25in. g 4 \
Bogie Mass: 1876 Ib < 2 \
Data Acquired 0 -
Accelerometer: SLICE-2 2
Camera Data: GoPros, AOS-9 Perpendicular 0 0.05 1 01 0.2 0.25
Time (s)
30 Force vs. Deflection At Impact Location 45 Bogie Velocity vs. Time
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Figure H-10. Test No. P3G-5 Results (SLICE-2)
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MIDWEST ROADSIDE SAFETY FACILITY

Bogie Test Summary

Test Information Test Results Summary
Test Description: 8x8x3/16 tube w 96-in. embedment in weak soil Event Duration: 0.1360 sec
Test Number: P3G-6 Max. Deflection: 29.7 in.
Test Date: 5/19/2016 Peak Force: 29.2 k
Failure Type: Post Rotation Initial Linear Stiffness: 12.6 kfin.
Total Energy: 511.2 k-in.
Post Properties
Post Type: Steel tube @5" @ 10" @ I5" @207
Post Size: 8x8x3/16 Average Force (k) 20.13 19.54 18.94 18.76
Post Length: 1321in. Energy (k-in.) 100.6 1954 284.1 375.2
Embedment Depth: 96 in.
Orientation: Strong-Axis 18 Bogie Acceleration vs. Time
. . 16
Soil Properties .
Gradation: AASHTO Weak Soil _u Wl
Moisture Content: w12
Compaction Method: T 10 |V‘ v
o
. ; = W \
Bogie Properties o NN~ —
Impact Velocity: 26.09 mph (38.27 fils) 26
Impact Height: 25in S 4
Bogie Mass: 1876 Ib < 2
Data Acquired 0
Accelerometer: SLICE-1 2
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Figure H-11. Test No. P3G-6 Results (SLICE-1)
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Bogie Test Summary

Test Information Test Results Summary
Test Description: 8x8x3/16 tube w 96-in. embedment in weak soil Event Duration: 0.1360 sec
Test Number: P3G-6 Max. Deflection: 294 in.
Test Date: 5/19/2016 Peak Force: 284 k
Failure Type: Post Rotation Initial Linear Stiffness: 12.7 kfin.
Total Energy: 511.6 k-in.
Post Properties
Post Type: Steel tube @5" @ 10" @ I5" @207
Post Size: 8x8x3/16 Average Force (k) 19.81 19.38 18.96 18.84
Post Length: 1321in. Energy (k-in.) 99.1 193.8 284.4 376.7
Embedment Depth: 96 in.
Orientation: Strong-Axis 16 Bogie Acceleration vs. Time
Soil Properties 14 \/\
Gradation: AASHTO Weak Soil _n
Moisture Content: w10 \\”
Compaction Method: <
5 s W ‘\\
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Data Acquired 0
Accelerometer: SLICE-2 2
Camera Data: GOPTOS, AO0S-9 Perpendicular 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
Time (s)
30 Force vs. Deflection At Impact Location 45 Bogie Velocity vs. Time
40
25 I/\ \ 35 N
20 30 \\
I \/\/!‘\/\, g
— \ = 25
=15 £
p I TN A S 20 ‘\
S 10 g B ~
) l 3 10 ~—
>
5 5
0 0
-5
-5 -10
0 > 10 5 20 % 30 3% 0 002 004 006 008 01 012 014 016
Deflection (in.) Time (s)
600 Energy vs. Deflection At Impact Location 3 Deflection at Impact Location vs. Time
500 /1 30 /’_
/ ~ 25 '/
T 400 - g /
< / g 20 5
> 300 7 2
%ﬂ / E 15
& 200 2
10 /
100 s /
0 0
0 5 10 15 20 25 30 35 0 0.02 004 006 008 01 012 014 016
Deflection (in.) Time (s)

Figure H-12. Test No. P3G-6 Results (SLICE-2)
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Bogie Test Summary

Test Information

Test Results Summary

Test Description: 8x6x3/16 tube w 48-in. embedment in strong soll Event Duration: 0.2240 sec
Test Number: P3G-7 Max. Deflection: 48.2 in.
Test Date: 5/11/2016 Peak Force: 25.0 k
Failure Type: Soil shear Initial Linear Stiffness: 12.2 kfin.
Total Energy: 423.1 k-in.
Post Properties
Post Type: Steel tube @5" @ 10" @ I5" @207
Post Size: 8x6x3/16 Average Force (k) 15.03 14.75 14.13 13.14
Post Length: 84in. Energy (k-in.) 75.2 1475 211.9 262.8
Embedment Depth: 481n.
Orientation: Strong-Axis 14 Bogie Acceleration vs. Time
Soil Properties 12
Gradation: AASHTO Strong Soil 10
Moisture Content: -u"'n n
Compaction Method: ~ Hand-tamped in 6-in. lifts z 8 “M
o
. . B 6
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Figure H-13. Test No. P3G-7 Results (SLICE-1)
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Bogie Test Summary

Test Information

Test Results Summary

Test Description: 8x6x3/16 tube w 48-in. embedment in strong soll Event Duration: 0.2240 sec
Test Number: P3G-7 Max. Deflection: 48.4 in.
Test Date: 5/12/2016 Peak Force: 244 k
Failure Type: Soil shear Initial Linear Stiffness: 11.9 kfin.
Total Energy: 4235 k-in.
Post Properties
Post Type: Steel tube @ 5" @ 107 @ IS5 @207
Post Size: 8x6x3/16 Average Force (k) 14.58 14.24 13.72 12.90
Post Length: 84in. Energy (k-in.) 72.9 142.4 205.8 257.9
Embedment Depth: 481n.
Orientation: Strong-Axis 14 Bogie Acceleration vs. Time
Soil Properties 12 i
Gradation: AASHTO Strong Soil 10
Moisture Content: -u"'n \
Compaction Method: ~ Hand-tamped in 6-in. lifts z 8 VAM
2
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Figure H-14. Test No. P3G-7 Results (SLICE-2)
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Bogie Test Summary

Test Information

Test Results Summary

Test Description: 8x8x3/16 tube w 48-in. embedment in strong soll Event Duration: 0.2060 sec
Test Number: P3G-8 Max. Deflection: 37.1 in.
Test Date: 5/12/2016 Peak Force: 311 k
Failure Type: Soil Shear Initial Linear Stiffness: 13.9 kfin.
Total Energy: 470.0 k-in.
Post Properties
Post Type: Steel tube @ 5" @ 107 @ IS5 @207
Post Size: 8x8x3/16 Average Force (k) 22.20 23.28 21.46 18.88
Post Length: 84in. Energy (k-in.) 111.0 232.8 322.0 3771.5
Embedment Depth: 481n.
Orientation: Strong-Axis 2 Bogie Acceleration vs. Time
Soil Properties A
Gradation: AASHTO Strong Soil I
Moisture Content: -u"'n
Compaction Method: ~ Hand-tamped in 6-in. lifts ‘g 10
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Figure H-15. Test No. P3G-8 Results (SLICE-1)
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Bogie Test Summary
Test Information Test Results Summary
Test Description: 8x8x3/16 tube w 48-in. embedment in strong soll Event Duration: 0.2060 sec
Test Number: P3G-8 Max. Deflection: 374 in.
Test Date: 5/13/2016 Peak Force: 30.2 k
Failure Type: Soil shear Initial Linear Stiffness: 14.0 kfin.
Total Energy: 469.8 k-in.
Post Properties
Post Type: Steel tube @ 5" @ 107 @ IS5 @207
Post Size: 8x8x3/16 Average Force (k) 21.72 22.61 20.97 18.67
Post Length: 84in. Energy (k-in.) 108.6 226.1 314.6 373.4
Embedment Depth: 481n.
Orientation: Strong-Axis 18 Bogie Acceleration vs. Time
. . 16
Soil Properties
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Figure H-16. Test No. P3G-8 Results (SLICE-2)
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Bogie Test Summary

Test Information Test Results Summary
Test Description: 8x4x3/16 tube w 78-in. embedment in weak soil Event Duration: 0.1860 sec
Test Number: P3G-13 Max. Deflection: 55.0 in.
Test Date: 5/18/2016 Peak Force: 17.1 k
Failure Type: Post Rotation Initial Linear Stiffness: 3.7 kifin.
Total Energy: 432.6 k-in.
Post Properties
Post Type: Steel tube @5" @ 10" @ 15" @20"
Post Size: 8x4x3/16 Average Force (k) 9.10 8.39 1.37 6.97
Post Length: 1101in. Energy (k-in.) 45.5 83.9 110.6 139.3
Embedment Depth: 78in.
Orientation: Strong-Axis 10 Bogie Acceleration vs. Time
Soil Properties 8
Gradation: AASHTO Weak Soil - \
Moisture Content: W 6
Compaction Method: < ~ A
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Figure H-17. Test No. P3G-13 Results (SLICE-1)
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Bogie Test Summary

Test Information

Test

Results Summary

Test Description: 8x4x3/16 tube w 78-in. embedment in weak soil Event Duration: 0.1860 sec
Test Number: P3G-13 Max. Deflection: 53.9 in.
Test Date: 5/18/2016 Peak Force: 16.7 k
Failure Type: Post Rotation Initial Linear Stiffness: 4.6 kfin.
Total Energy: 436.3 k-in.
Post Properties
Post Type: Steel tube @ 5" @ 107 @ IS5 @207
Post Size: 8x4x3/16 Average Force (k) 11.38 8.90 .74 7.28
Post Length: 1101in. Energy (k-in.) 56.9 89.0 116.1 145.6
Embedment Depth: 78in.
Orientation: Strong-Axis 10 Bogie Acceleration vs. Time
Soil Properties 8 H
Gradation: AASHTO Weak Soil -
Moisture Content: W 6
Compaction Method: F \ A
Bogie Properties 5 4 \/‘V
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Figure H-18. Test No. P3G-13 Results (SLICE-2)
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Bogie Test Summary

Test Information

Test Results Summary

Test Description: 8x4x3/16 tube w 90-in. embedment in weak soil Event Duration: 0.1500 sec
Test Number: P3G-14 Max. Deflection: 44.3 in.
Test Date: 5/18/2016 Peak Force: 16.6 k
Failure Type: Post Rotation and Yielding Initial Linear Stiffness: 4.5 Kfin.
Total Energy: 482.4 k-in.
Post Properties
Post Type: Steel tube @5" @ 10" @ I5" @207
Post Size: 8x4x3/16 Average Force (k) 11.62 11.18 10.21 10.00
Post Length: 1221in. Energy (k-in.) 58.1 111.8 153.1 199.9
Embedment Depth: 90 in.
Orientation: Strong-Axis 10 Bogie Acceleration vs. Time
Soil Properties 8 vn
Gradation: AASHTO Weak Soil - e~
Moisture Content: 10 6 T
Compaction Method: ‘é’ \ Mw
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Figure H-19. Test No. P3G-14 Results (SLICE-1)
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Bogie Test Summary

Test Information

Test Results Summary

Test Description: 8x4x3/16 tube w 90-in. embedment in weak soil Event Duration: 0.1500 sec
Test Number: P3G-14 Max. Deflection: 439 in.
Test Date: 5/18/2016 Peak Force: 16.2 k
Failure Type: Post Rotation and Yielding Initial Linear Stiffness: 4.3 kfin.
Total Energy: 4845 k-in.
Post Properties
Post Type: Steel tube @ 5" @ 107 @ IS5 @207
Post Size: 8x4x3/16 Average Force (k) 11.40 11.04 10.16 10.01
Post Length: 1221in. Energy (k-in.) 57.0 1104 152.4 200.1
Embedment Depth: 90 in.
Orientation: Strong-Axis 10 Bogie Acceleration vs. Time
Soil Properties 8 L
Gradation: AASHTO Weak Soil
N e~ TN
Moisture Content: o 6 A~
Compaction Method: - \ '/\/\/‘w
2
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Figure H-20. Test No. P3G-14 Results (SLICE-2)
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Bogie Test Summary

Test Information Test Results Summary
Test Description: 8x4x3/16 tube w 102-in. embedment depth Event Duration: 0.1060 sec
Test Number: P3G-15 Max. Deflection: 355 in.
Test Date: 6/1/2016 Peak Force: 18.1 k
Failure Type: Buckling Initial Linear Stiffness: 7.2 kfin.
Total Energy: 394.3 k-in.
Post Properties
Post Type: Steel @5" @ 10" @ I5" @207
Post Size: 8x4x3/16 Average Force (k) 11.15 12.64 12.81 12.85
Post Length: 134in. Energy (k-in.) 55.8 126.4 192.1 257.0
Embedment Depth: 102 in.
Orientation: Strong-Axis 12 Bogie Acceleration vs. Time
Soil Properties 10
Gradation: AASHTO Strong Soil = 8 A
Moisture Content: -
Compaction Method: f 6 V \"’\\/"'\/\___’\
2
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Figure H-21. Test No. P3G-15 Results (SLICE-1)
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Bogie Test Summary

Test Information Test Results Summary
Test Description: 8x4x3/16 tube w 102-in. embedment depth Event Duration: 0.1060 sec
Test Number: P3G-15 Max. Deflection: 35.6 in.
Test Date: 6/1/2016 Peak Force: 17.8 k
Failure Type: Buckling Initial Linear Stiffness: 7.4 kfin.
Total Energy: 392.8 k-in.
Post Properties
Post Type: Steel @5" @ 10" @ 15" @20"
Post Size: 8x4x3/16 Average Force (k) 11.00 12.47 12.66 12.74
Post Length: 134in. Energy (k-in.) 55.0 124.7 189.9 254.7
Embedment Depth: 102 in.
Orientation: Strong-Axis 10 Bogie Acceleration vs. Time
Soil Properties 8 .\,
Gradation: AASHTO Strong Soil vv
Moisture Content: o \/\—\"’\A
Compaction Method: - \—
o
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Figure H-22. Test No. P3G-15 Results (SLICE-2)
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Bogie Test Summary

Test Information Test Results Summary
Test Description: 8x4x3/16 tube w 40-in. embedment depth Event Duration: 0.1120 sec
Test Number: P3G-16 Max. Deflection: 38.8 in.
Test Date: 5/20/2016 Peak Force: 16.1 k
Failure Type: Initial Linear Stiffness: 8.4 kifin.
Total Energy: 246.6 k-in.
Post Properties
Post Type: Steel @ 5" @ 107 @ IS5 @207
Post Size: 8x4x3/16 Average Force (k) 7.96 8.17 7.85 7.55
Post Length: 72in. Energy (k-in.) 39.8 81.7 117.7 150.9
Embedment Depth: 401in.
Orientation: Strong-Axis 10 Bogie Acceleration vs. Time
Soil Properties 8 A
Gradation: AASHTO Strong Soil - \
Moisture Content: Optimum Moisture -u"'n 6 a
Compaction Method: - \ I\ \
o
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Figure H-23. Test No. P3G-16 Results (SLICE-1)
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Bogie Test Summary

Test Information Test Results Summary
Test Description: 8x4x3/16 tube w 40-in. embedment depth Event Duration: 0.1120 sec
Test Number: P3G-16 Max. Deflection: 38.8 in.
Test Date: 5/20/2016 Peak Force: 15.7 k
Failure Type: Initial Linear Stiffness: 9.7 kfin.
Total Energy: 247.4 k-in.
Post Properties
Post Type: Steel @ 5" @ 107 @ IS5 @207
Post Size: 8x4x3/16 Average Force (k) 8.31 8.10 7.79 7.54
Post Length: 72in. Energy (k-in.) 41.6 81.0 116.9 150.8
Embedment Depth: 401in.
Orientation: Strong-Axis 10 Bogie Acceleration vs. Time
Soil Properties 8 A
Gradation: AASHTO Strong Soil - n
Moisture Content: Optimum Moisture w 6
Compaction Method: - I \ I\
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Figure H-24. Test No. P3G-16 Results (SLICE-2)
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Bogie Test Summary
Test Information Test Results Summary
Test Description: 8x8x3/8 tube w 48-1n. embedment depth Event Duration: 0.1760 sec
Test Number: P3G-17 Max. Deflection: 46.9 in.
Test Date: 6/7/2016 Peak Force: 52.7 k
Failure Type: Initial Linear Stiffness: 15.4 kfin.
Total Energy: 610.0 k-in.
Post Properties
Post Type: Steel @ 5" @ 107 @ IS5 @207
Post Size: 8x8x3/8 Average Force (k) 21.92 20.07 19.07 18.56
Post Length: 84in. Energy (k-in.) 109.6 200.7 286.1 371.2
Embedment Depth: 481n.
Orientation: Strong-Axis 12 Bogie Acceleration vs. Time
Soil Properties 10
Gradation: AASHTO Strong Soil -
Moisture Content: o8
Compaction Method: =
s 6
Bogie Properties 5 4 Mo
Impact Velocity: 20.87 mph (30.61 i) 2 l VUV\ M
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Bogie Mass: 5212 Ib
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Figure H-25. Test No. P3G-17 Results (SLICE-1)
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Bogie Test Summary

Test Information Test Results Summary
Test Description: 8x8x3/8 tube w 48-1n. embedment depth Event Duration: 0.1760 sec
Test Number: P3G-17 Max. Deflection: 46.8 in.
Test Date: 6/7/2016 Peak Force: 52.2 k
Failure Type: Initial Linear Stiffness: 11.5 kfin.
Total Energy: 612.5 k-in.
Post Properties
Post Type: Steel @5" @ 10" @ 15" @20"
Post Size: 8x8x3/8 Average Force (k) 25.17 20.20 19.72 18.72
Post Length: 84in. Energy (k-in.) 125.8 202.0 295.8 374.3
Embedment Depth: 481n.
Orientation: Strong-Axis 12 Bogie Acceleration vs. Time
Soil Properties 10
Gradation: AASHTO Strong Soil _ 3
Moisture Content: o
Compaction Method: z 6 A
Bogie Properties % 4 \ A
Impact Velocity: 20.87 mph (30,61 1t/s) 2 ’\/,\ V\!\J\/\ AN
Impact Height: 25in. I+ v V V\/\/\/\/\
Bogie Mass: 5212 Ib <0
Data Acquired -2
Accelerometer: SLICE-2 -4 0.05 01 0.15 02
Camera Data: GoPros, AOS-9 Perpendicular Time (s)
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Figure H-26. Test No. P3G-17 Results (SLICE-2)
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Bogie Test Summary

Test Information Test Results Summary
Test Description: 8x6x3/8 tube w 72-1n. embedment depth Event Duration: 0.1180 sec
Test Number: P3G-18 Max. Deflection: 40.0 in.
Test Date: 6/7/2016 Peak Force: 62.2 k
Failure Type: Initial Linear Stiffness: 14.5 kfin.
Total Energy: 1091.1 k-in.
Post Properties
Post Type: Steel @5" @ 10" @ I5" @207
Post Size: 8X6x3/8 AVerage Force (K) 20.89 26.75 28.38 28.05
Post Length: 108 in. Energy (k-in.) 149.4 267.5 425.7 577.0
Embedment Depth: 72in.
Orientation: Strong-Axis 14 Bogie Acceleration vs. Time
Soil Properties 12
Gradation: AASHTO Strong Soil 10
Moisture Content: -u"'n
Compaction Method: z 8 A
Bogie Properties ."% 6 ’ \ I\,\ A
mpact Velocity: 2633 Tph GE6TT) s, NNV VY VY N
Impact Height: 25in. I+ ’ V\ \
Bogie Mass: 5212 Ib <2 \
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Accelerometer: SLICE-1 2
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Figure H-27. Test No. P3G-18 Results (SLICE-1)
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Bogie Test Summary

Test Information Test Results Summary
Test Description: 8x6x3/8 tube w 72-1n. embedment depth Event Duration: 0.1180 sec
Test Number: P3G-18 Max. Deflection: 39.8 in.
Test Date: 6/7/2016 Peak Force: 54.6 k
Failure Type: Initial Linear Stiffness: 9.6 kifin.
Total Energy: 1093.8 k-in.
Post Properties
Post Type: Steel @5" @ 10" @ IS5 @207
Post Size: 8x6x3/8 Average Force (k) 26.56 27.99 29.39 29.33
Post Length: 108 in. Energy (k-in.) 132.8 279.9 440.8 586.5
Embedment Depth: 72in.
Orientation: Strong-Axis 12 Bogie Acceleration vs. Time
Soil Properties 10
Gradation: AASHTO Strong Soil - I
Moisture Content: o8 A
Compaction Method: ‘g 6 I M .A'. I\\\,\j/\ A
Bogie Properties ® 4 I r U’ \\j v \/\/\f\
Impact Velocity: 26.33 mph (3861 i) 2 \
Impact Height: 25in. S
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0
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Figure H-28. Test No. P3G-18 Results (SLICE-2)
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Bogie Test Summary

Test Information

Test Results Summary

Test Description: 8x8x3/8 tube w 72-1n. embedment depth Event Duration: 0.1240 sec
Test Number: P3G-19 Max. Deflection: 373 in.
Test Date: 6/8/2016 Peak Force: 68.1 k
Failure Type: Initial Linear Stiffness: 17.2 kfin.
Total Energy: 1129.0 k-in.
Post Properties
Post Type: Steel @5" @ 10" @ I5" @207
Post Size: 8x8x3/8 Average Force (k) 33.20 30.29 31.73 32.05
Post Length: 72in. Energy (k-in.) 166.0 302.9 476.0 641.0
Embedment Depth: 108 in.
Orientation: Strong-Axis 16 Bogie Acceleration vs. Time
Soil Properties 14
Gradation: AASHTO Strong Soil _n
Moisture Content: w10
Compaction Method: =
2 8 A
Bogie Properties 5 . , A ”l\.,/\ [\AV/V\-/‘/\\
Impact Velocity: 25.66 mph (37.64115) 2 ' ‘ \ \ W"\
Impact Height: 25in. g 4 ’ V \
Bogie Mass: 5005 Ib < 2
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Accelerometer: SLICE-1 2
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Figure H-29. Test No. P3G-19 Results (SLICE-1)
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Bogie Test Summary

Test Information Test Results Summary
Test Description: 8x8x3/8 tube w 72-1n. embedment depth Event Duration: 0.1240 sec
Test Number: P3G-19 Max. Deflection: 38.2 in.
Test Date: 6/8/2016 Peak Force: 64.0 k
Failure Type: Initial Linear Stiffness: 9.5 kfin.
Total Energy: 1124.1 k-in.
Post Properties
Post Type: Steel @5" @ 10" @ I5" @207
Post Size: 8x8x3/8 Average Force (k) 20.17 25.06 28.67 29.78
Post Length: 72in. Energy (k-in.) 100.8 250.6 430.1 595.5
Embedment Depth: 108 in.
Orientation: Strong-Axis 14 Bogie Acceleration vs. Time
Soil Properties 12
Gradation: AASHTO Strong Soil 10 A
Moisture Content: -u"'n A A
Compaction Method: z 8
Bogie Properties ."% 6 I , I \VJ/\/\’/\ \/AVA\/A
Impact Velocity: 25.66 mph (37.64115) 24 , I \A
Impact Height: 25in. I+ U \_
Bogie Mass: 5005 Ib <2
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Accelerometer: SLICE-2 2
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Figure H-30. Test No. P3G-19 Results (SLICE-2)
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Bogie Test Summary

Test Information

Test Results Summary

Test Description: 4x8x3/8 tube w 90-in. embedment depth Event Duration: 0.1500 sec
Test Number: P3G-22 Max. Deflection: 414 in.
Test Date: 6/8/2016 Peak Force: 322 k
Failure Type: Initial Linear Stiffness: 15.3 kfin.
Total Energy: 553.0 k-in.
Post Properties
Post Type: Steel @5" @ 10" @ I5" @207
Post Size: 4x8x3/8 Average Force (k) 19.55 14.99 13.74 13.58
Post Length: 1221in. Energy (k-in.) 97.8 149.9 206.1 271.6
Embedment Depth: 90 in.
Orientation: Strong-Axis 20 Bogie Acceleration vs. Time
Soil Properties
Gradation: _ 15
Moisture Content: o
Compaction Method: T 10
o
. i F= em———
Bogie Properties o \‘ [\./\'\/\IM
Impact Velocity: 27.38 mph (40.16 fifs) 25
Impact Height: 25in. S v
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Figure H-31. Test No. P3G-22 Results (SLICE-1)
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Bogie Test Summary

Test Information

Test Results Summary

Test Description: 4x8x3/8 tube w 90-in. embedment depth Event Duration: 0.1500 sec
Test Number: P3G-22 Max. Deflection: 41.0 in.
Test Date: 6/8/2016 Peak Force: 311 k
Failure Type: Initial Linear Stiffness: 14.5 kfin.
Total Energy: 554.5 k-in.
Post Properties
Post Type: Steel @5" @ 10" @ I5" @207
Post Size: 4x8x3/8 Average Force (k) 15.88 14.81 13.64 13.64
Post Length: 1221in. Energy (k-in.) 94.4 148.1 204.6 272.8
Embedment Depth: 90 in.
Orientation: Strong-Axis 20 Bogie Acceleration vs. Time
Soil Properties
Gradation: b
Moisture Content: o
Compaction Method: T 10
2
Bogie Properties s \ ,\'_/\'\/W"
Impact Velocity: 27.38 mph (40.16 fifs) 25
Impact Height: 251n. I+ V
Bogie Mass: 1876 Ib < 0
Data Acquired
Accelerometer: SLICE-2 5 0.05 01 0.15 02
Camera Data: GoPros, AOS-9 Perpendicular Time (s)
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Figure H-32. Test No. P3G-22 Results (SLICE-2)
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Bogie Test Summary
Test Information Test Results Summary
Test Description: 4x8x3/8 tube w 102-in. embedment depth Event Duration: 0.1620 sec
Test Number: P3G-23 Max. Deflection: 42.9 in.
Test Date: 6/8/2016 Peak Force: 372 k
Failure Type: Initial Linear Stiffness: 15.2 kfin.
Total Energy: 702.3 k-in.
Post Properties
Post Type: Steel @5" @ 10" @ 15" @20"
Post Size: 4x8x3/8 Average Force (k) 20.89 19.71 18.45 17.93
Post Length: 134in. Energy (k-in.) 104.5 197.1 276.7 358.6
Embedment Depth: 102 in.
Orientation: Strong-Axis 25 Bogie Acceleration vs. Time
Soil Properties 20
Gradation: _
Moisture Content: w15
Compaction Method: =
o
. . s 10
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Figure H-33. Test No. P3G-23 Results (SLICE-1)
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Bogie Test Summary

Test Information Test Results Summary
Test Description: 4x8x3/8 tube w 102-in. embedment depth Event Duration: 0.1620 sec
Test Number: P3G-23 Max. Deflection: 42.8 in.
Test Date: 6/8/2016 Peak Force: 372 k
Failure Type: Initial Linear Stiffness: 15.2 kfin.
Total Energy: 702.2 k-in.
Post Properties
Post Type: Steel @5" @ 10" @ 15" @20"
Post Size: 4x8x3/8 Average Force (k) 19.97 19.38 18.22 17.87
Post Length: 102 in. Energy (k-in.) 99.9 193.8 273.3 357.5
Embedment Depth: 134in.
Orientation: Strong-Axis 25 Bogie Acceleration vs. Time
Soil Properties 20
Gradation: _
Moisture Content: w15
Compaction Method: =
o
. . s 10
Bogie Properties o || N —
S_ e
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Figure H-34. Test No. P3G-23 Results (SLICE-2)
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Appendix . Filtering Study
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11.1 Background
The Society of Automotive Engineers (SAE) established guidelines for measuring
and analyzing data for impact events in SAE J211 [37].Two acceleration filters were
used:
e To estimate forces, a CFC 60 filter is applied.
e To estimate vehicle and occupant displacements and injury risk, a CFC 180 fitler
is used.
Both filters are high pass filters, in which frequencies above the cutoff are
attenuated significantly.
11.2 Research Objectives
During an impact event, stress waves, part oscillations, harmonics and instrument
noise can affect acceleration data. The SAE J211/1 recommendations for CFC 60 or CFC
180 filters may not be well suited for all impact test analysis. This study was completed
to determine the limitations on filter representations of data shapes.
11.3 Scope
Researchers evaluated the filter effects on data pulses for three wave forms and
eight pulse durations:
e Square Waves
e Sawtooth Waves
e Triangle Waves
e 50,25, 15, 10, 15, 7.5, 5, 2.5, 1 ms Durations
These waves and durations were inserted into the CFC 60 filter and a comparison

was made between the raw and filtered output. This study looked at how changing the
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duration of a burst pulse affected the output from the CFC 60 filter. A nominal sampling
frequency of 10,000 Hz. was used to generate the raw data.
11.4 Methods

After the acceleration pulses were inserted into the digital filter, maxima were
identified and recorded. The ratio of filter maxima to input data was was also calculated
and was displayed on the output graphs as: “Filter Max / Input Max”. Researchers also
calculated the peak slope of the filtered data as well, using linear approximation of peak-
to-rise amplitude and time duration. Internal functions within excel were used to
determine the slope from 0 to the maximum value and is displayed on the graphical
outputs. For he square and triangle wave pulses the slope from the maximum value back
to 0 is the negative version of the displayed value. The increase and decrease slopes for
sawtooth waves are different and both of these values are displayed on the graphical
outputs.
11.5 Square Wave Pulses

Square wave pulses ranging between 50 and 1 millisecond were input into the
CFC 60 filter to determine the amount of attenuation and amplification that occurs.

Square wave results are shown in the figures below and summarized in the table.
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CFC 60 Filtered Acceleration vs Input Acceleration
Filter Max / Input Max = 1.067
Slope = 125.545 g's/s

Acceleration(g's)

-0.2

"0.985 0.995 1.005 1.015 1.025 1.035 1.045 1.055

Time (sec)

| === CFC Filtered Acceleration Input Acceleration

1.065

Figure I-1. 50 ms. Square Wave Pulse

CFC 60 Filtered Acceleration vs Input Acceleration
Filter Max / Input Max = 1.067
Slope = 125.544 g's/s

Acceleration(g's)

-02
0.985 0.995 1.005

1.015 1.025

Time (sec)

| === CFC Filtered Acceleration Input Acceleration

Figure 1-2. . 25 ms. Square Wave Pulse
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CFC 60 Filtered Acceleration vs Input Acceleration
Filter Max / Input Max = 1.066
Slope = 125.405 g's/s

Acceleration(g's)

-02
0.985 0.99 0.995 1 1.005 1.01 1.015 1.02 1.025 1.03
Time (sec)
| === CFC Filtered Acceleration Input Acceleration

Figure 1-3. 15 ms. Square Wave Pulse

CFC 60 Filtered Acceleration vs Input Acceleration
Filter Max / Input Max = 1.084
Slope = 130.577 g's/s

Acceleration(g's)

-0.2

"0.985 0.99 0.995 1 1.005 1.01 1.015 1.02 1.025

Time (sec)

| === CFC Filtered Acceleration Input Acceleration

Figure 1-4. 10 ms. Square Wave Pulse
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CFC 60 Filtered Acceleration vs Input Acceleration
Filter Max / Input Max = 1.096
Slope = 137.042 g's/s

Acceleration(g's)

“0.99 0.995 1 1.005 1.01 1.015

Time (sec)

| === CFC Filtered Acceleration Input Acceleration

Figure I-5. 7.5 ms. Square Wave Pulse

CFC 60 Filtered Acceleration vs Input Acceleration
Filter Max / Input Max = 0.997
Slope = 146.556 g's/s

Acceleration(g's)

1.005 1.01

099 0.995 1

Time (sec)

| === CFC Filtered Acceleration Input Acceleration

Figure 1-6. 5 ms. Square Wave Pulse
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CFC 60 Filtered Acceleration vs Input Acceleration
Filter Max / Input Max = 0.660
Slope = 110.037 g's/s

Acceleration(g's)

“0.99 0.995 1 1.005 1.01

Time (sec)

| === CFC Filtered Acceleration Input Acceleration

Figure I-7. 2.5 ms. Square Wave Pulse

CFC 60 Filtered Acceleration vs Input Acceleration
Filter Max / Input Max = 0.309
Slope = 54.254 g'sl/s
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“0.99 0.995 1
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| === CFC Filtered Acceleration Input Acceleration

Figure 1-8. 1 ms. Square Wave Pulse
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Table 50. Filter Max / Input Max and Filter Slope for Square Waves

Pulse Length (ms) | Filter Max / Input Max | Slope (g's/s)

50 1.067 125.545
25 1.067 125.544
15 1.066 125.405
10 1.084 130.577
7.5 1.096 137.042

5 0.997 146.556
2.5 0.660 110.037

1 0.309 54.254

11.5.1 Square Wave Discussion

Pulses between 7.5 and 10 ms are slightly amplified near the center of the pulse
but when the pulse is between 1 and 5 ms in length the data is attenuated to a very high
degree. This suggests that impact events occurring between 7.5 and 10 ms will be slightly
amplified in the resulting filtered acceleration but it appears that this amplification is
minimal and pulse durations of this size will be accurately captured with the CFC 60
system. Even though data up until 7.5 ms is accurately represented, events occurring in
less than 5 ms are being attenuated far too much and accelerations are not being
represented in the correct way.
11.6 Sawtooth Wave Pulse

As mentioned previously a square wave is not the most realistic representation of
an impact event because it takes a finite amount of time for the load to go from zero to
some value. In an attempt to model an impact event more realistically sawtooth waves
were inserted into the same CFC 60 filtration system that was used to test the square
waves. Even though this model is more realistic than the square wave data it still has
some problems. This is mainly due to the fact that the signal will not decrease

instantaneously to zero, which is exactly how these waves are modeled. The output
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graphs show the maximum output of the filtered data divided by the maximum input from
the sawtooth wave signal at both the beginning and ending of the pulse and it also shows
the slope of the signal as it increases from 0 to a maximum as well as the slope from the
maximum value as it decreases back to zero, with the assumption that these slopes act

linearly over the periods.
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CFC 60 Filtered Acceleration vs Input Acceleration
Initial: Filter Max / Input Max = .961 Slope =19.485 g's/s
Ending: Filter Max/ Input Max = .991 Slope = -127.065 g's/g

Acceleration(g's)

“0.99 1 1.01 1.02 1.03 1.04 1.05 1.06

Time (sec)

| === CFC Filtered Acceleration Input Acceleration

Figure 1-9. 50 ms. Sawtooth Wave Pulse

CFC 60 Filtered Acceleration vs Input Acceleration
Initial: Filter Max / Input Max = .899 Slope =36.382 g's/s
Ending: Filter Max/ Input Max = .926 Slope = -123.484 g's/g

Acceleration(g's)

1.02 1.03 1.04

099 1 101

Time (sec)

| === CFC Filtered Acceleration Input Acceleration

Figure 1-10. 25 ms. Sawtooth Wave Pulse
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CFC 60 Filtered Acceleration vs Input Acceleration
Initial: Filter Max / Input Max = .827 Slope =54.793 g's/s
Ending: Filter Max/ Input Max = .851 Slope = -119.844 g's/g

Acceleration(g's)

“0.99 0.995 1 1.005 1.01 1.015 1.02

Time (sec)

| === CFC Filtered Acceleration Input Acceleration

Figure I-11. 15 ms. Sawtooth Wave Pulse

CFC 60 Filtered Acceleration vs Input Acceleration
Initial: Filter Max / Input Max = .752 Slope =71.643 g's/s
Ending: Filter Max/ Input Max = .771 Slope =-113.319 g's/g

Acceleration(g's)

) 0.99 0.995 1 1.005 1.01 1.015 1.02
Time (sec)
| === CFC Filtered Acceleration Input Acceleration

1.025

Figure 1-12. 10 ms. Sawtooth Wave Pulse
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CFC 60 Filtered Acceleration vs Input Acceleration
Initial: Filter Max / Input Max = .686 Slope =81.66 g's/s
Ending: Filter Max/ Input Max = .698 Slope = -107.375 g's/g

Acceleration(g's)

“0.99 0.995 1 1.005 1.01 1.015 1.02

Time (sec)

| === CFC Filtered Acceleration Input Acceleration

Figure 1-13. 7.5 ms. Sawtooth Wave Pulse

CFC 60 Filtered Acceleration vs Input Acceleration
Initial: Filter Max / Input Max = .566 Slope =83.214 g's/s
Ending: Filter Max / Input Max = .570 Slope = -93.458 g's/g

Acceleration(g's)

1.005 1.01 1.015

099 0.995 1

Time (sec)

| === CFC Filtered Acceleration Input Acceleration

Figure 1-14. 5 ms. Sawtooth Wave Pulse
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CFC 60 Filtered Acceleration vs Input Acceleration
Initial: Filter Max / Input Max = .345 Slope =58.467 g's/s
Ending: Filter Max / Input Max = .345 Slope = -58.532 g's/g

Acceleration(g's)

“0.99 0.995 1 1.005 1.01

Time (sec)

| === CFC Filtered Acceleration Input Acceleration

Figure 1-15. 2.5 ms. Sawtooth Wave Pulse

CFC 60 Filtered Acceleration vs Input Acceleration
Initial: Filter Max / Input Max = .156 Slope =27.409 g's/s
Ending: Filter Max / Input Max = .156 Slope = -27.411 g's/g

Acceleration(g's)

1.005 1.01

099 0.995 1

Time (sec)

| === CFC Filtered Acceleration Input Acceleration

Figure 1-16. 1 ms. Sawtooth Wave Pulse
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Table I-1. Filter Max / Input Max and Filter Slope for Sawtooth Waves

Pulse Length (ms) | Initial Filter Max / Input Max | Initial Slope (g's/s) | Ending Filter Max / Input Max | Initial Slope (g's/s)

50 0.961 19.485 0.991 -127.065

25 0.899 36.382 0.926 -123.484

15 0.827 54.793 0.851 -119.844

10 0.752 71.643 0.771 -113.319
7.5 0.686 81.66 0.698 -107.375

5 0.566 83.214 0.570 -93.458
2.5 0.345 58.467 0.345 -58.532

1 0.156 27.409 0.156 -27.411

11.6.1 Sawtooth Wave Discussion

The resulting graphical outputs shown above suggest that when impacts are
modeled as sawtooth waves and subjected to a CFC 60 filter the resulting output data is
captured fairly well between 50 and 15 ms, but values less than 15 ms seem to experience
attenuation levels that are quite severe and non-negligible. For example, when using a 5
ms pulse the acceleration profile is attenuated by around 40% when compared to the
nonfiltered data. This sort of attenuation is too large and could easily result in the wrong
decision being made when very fast impact events occur. This suggests that if impact
events can be modeled as sawtooth waves the resulting acceleration and force plots for
longer duration events are correctly represented but events that occur over very small
durations of time are over attenuated.
11.7 Triangle Wave Pulses

Square and sawtooth waves are very simple ways of modeling an impact event
but both of these waves experience a change in amplitude instantaneously which is
obviously an unrealistic modeling technique. In an attempt to more correctly model an
impact event triangle waves were inserted into the same CFC 60 filter that was used to
test the square and triangle waves. Since these triangle waves contain both an initial and

ending slope that occurs over a finite amount of time they should function as the best
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model when compared against the square and sawtooth waves. The output graphs show
the maximum output of the filtered data divided by the maximum input from the square
wave signal and it also shows the slope of the signal as it increases from 0 to a maximum

with the assumption that the slope acts linearly over this period.
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CFC 60 Filtered Acceleration vs Input Acceleration
Filter Max / Input Max = .968
Slope = 34.808 g's/s
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Figure I-17. 50 ms. Triangle Wave Pulse

CFC 60 Filtered Acceleration vs Input Acceleration
Filter Max / Input Max = .935
Slope = 61.132 g's/s

Acceleration(g's)
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| === CFC Filtered Acceleration Input Acceleration

Figure 1-18. 25 Triangle Wave Pulse
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CFC 60 Filtered Acceleration vs Input Acceleration
Filter Max / Input Max = .893
Slope = 86.736 g's/s
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Figure 1-19. 15 ms. Triangle Wave Pulse

CFC 60 Filtered Acceleration vs Input Acceleration
Filter Max / Input Max = .825
Slope = 104.441 g's/s
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Figure 1-20. 10 ms. Triangle Wave Pulse
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CFC 60 Filtered Acceleration vs Input Acceleration
Filter Max / Input Max = .741
Slope = 107.424 g's/s
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Figure 1-21. 7.5 ms. Triangle Wave Pulse

CFC 60 Filtered Acceleration vs Input Acceleration
Filter Max / Input Max = .589
Slope = 94.978 g's/s
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Figure 1-22. 5 ms. Triangle Wave Pulse
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CFC 60 Filtered Acceleration vs Input Acceleration
Filter Max / Input Max = .401
Slope = 57.356 g's/s
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Figure 1-23. 2.5 ms. Triangle Wave Pulse

CFC 60 Filtered Acceleration vs Input Acceleration
Filter Max / Input Max = .143
Slope = 25.048 g's/s

Acceleration(g's)
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Figure 1-24. 1 ms Triangle Wave Pulse
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Table I-2. Filter Max / Input Max and Filter Slope for Triangle Waves

Pulse Length (ms) | Filter Max / Input Max | Slope (g's/s)

50 0.968 34.808
25 0.935 61.132
15 0.893 86.736
10 0.825 104.441
7.5 0.741 107.424

5 0.589 94.978
2.5 0.401 57.356

1 0.143 25.048

11.8 Triangle Wave Discussion

The resulting graphical outputs shown above suggest that when impacts are
modeled as triangle waves and subjected to a CFC 60 filter they are, for the most part,
represented well and do not experience very much attenuation or amplification until pulse
lengths are less than 10 ms. Between 50 and 10 ms the amount of attenuation increases
from about 4 to 18 percent and after 10 ms it quickly decreases down to unacceptable
levels. This suggests that if an impact can be correctly modeled as a triangle wave

adverse attenuation will most likely not occur until the pulse length is below 10 ms.
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