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Debris fences are commonly used by states, in conjunction with a concrete 

parapet, to protect railway tracks. Their use limits the intrusion of debris that could 

damage tracks or clutter rail lines. Due to a lack of previously crash-tested systems, the 

safety performance of such designs are largely unknown. The Iowa Department of 

Transportation (DOT) desired that researchers at the Midwest Roadside Safety Facility 

(MwRSF) design a crashworthy debris fence mounted on top of a concrete parapet to 

meet the Manual for Assessing Safety Hardware (MASH) TL-3 crash test conditions. 

Part 1 of this thesis details the literature review and design of a crashworthy debris fence. 

Part II of this thesis details the results and analysis of 17 bogie tests that were 

conducted in support of the development of a non-proprietary barrier. These dynamic 

tests were conducted to evaluate the effectiveness of the modified Midwest Guardrail 

System (MGS) in both strong and weak soils. The bogie tests were conducted using steel 

tubes with varying cross-section geometries, embedment depths, and two different soil 

types. These parameters were investigated to evaluate their importance on the overall 

post-soil interaction forces. 
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1 INTRODUCTION 

The following thesis is a culmination of two independent topics. The first, 

consists of the development of vertical posts to be used in a MASH TL-3 compliant 

debris fence for the Iowa DOT. To limit vehicle interaction, during an impact scenario, 

these posts need to be flexible enough to yield backwards, but they also need to be rigid 

enough to withstand maximum anticipated wind loads. This resulted in the selection of 

2⅞-in. outside diameter ASTM F1083 regular grade schedule 40 piping spaced at 8 ft 

(2.4 m) centers as the vertical posts to be used in this debris fence design.  

The second topic in this thesis consists of the analysis of 17 bogie tests completed 

with rigid posts in soil. During this testing series the post width, embedment depth, and 

soil type were differentiated to determine the affect each individual parameter had on the 

overall post-soil interaction forces. This analysis yielded inconclusive results overall, but 

the post-soil interaction forces did increase as the width, and embedment depth increased, 

as well as when a stronger soil type was used. Additional testing is recommended to 

further determine the result of these parameter variations. 
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PART I 

2 INTRODUCTION – DEBRIS FENCE 

2.1 Background and Problem Statement  

When roadways pass over railway tracks, there is a risk that road debris may fall 

and damage tracks, clutter rail lines, or potentially cause concerns for train stability and 

safety. To prevent debris from interfering with train operations, a debris fence may be 

installed in conjunction with bridge rails on overpasses. In some circumstances, there is 

limited right-of-way adjacent to the travel lanes, and the fence may be located within a 

vehicle’s Zone of Intrusion (ZOI), which is the lateral extent that a vehicle extends over 

the top-front face or corner of a barrier during an impact scenario.  

The Iowa Department of Transportation (DOT) Office of Rail recently requested 

that the Midwest Roadside Safety Facility (MwRSF) develop designs for a debris fence, 

which could be attached to the top of a concrete bridge rail to prevent road debris from 

falling onto railroad tracks below. However, no debris fence has been crash-tested 

according to the American Association of State Highways and Transportation Officials 

(AASHTO) Manual for Assessing Safety Hardware (MASH) Test Level 3 (TL-3) 

specifications [1].  

Debris fences attached to bridge rails are subject to two major concerns. If the 

debris fence is located within the Zone of Intrusion (ZOI), it must not produce excessive 

occupant compartment deformations, vehicle snag, nor occupant risk due to the presence 

of stiff beam and post members. However, the fences must be strong enough to withstand 

live and dead loads from the bridge. It is desirable that, if an impact results in contact 
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with the fence, the fence be retained on the overpass and not produce additional debris on 

the tracks below. 

Thus, Iowa requested a review and evaluation of existing configurations of 

pedestrian fence and bridge railing combinations, as well as attachments to the top and 

sides of concrete barriers, and a recommended debris fence configuration that would 

likely meet crashworthiness requirements under MASH TL-3 impact conditions. 

2.2 Research Objectives  

The objective of this research was to determine a parapet and vertical posts to be 

used in the development of a MASH TL-3 compliant debris fence system attached to a 

crashworthy concrete bridge parapet design. This design will be used along high-speed 

roadways and must satisfy safety performance criteria during impact scenarios. In 

addition, this design must comply with current Iowa DOT Standards for the usage of 

chain-link fences near the travelled way.  

Phase I of the research consisted of a literature review of previously crash-tested 

fences mounted on concrete parapets and Zone of Intrusion (ZOI) details. In addition, 

current fence designs used by states were reviewed to compile details regarding fence 

geometries, key components, and connection details. MwRSF also collected information 

on debris fence design standards to ensure the design will meet wind load, and dead load 

requirements. 

Phase II of the research effort will consist of the crash testing and evaluation of 

the proposed debris fence design from Phase I. Prior to executing Phase II, the Iowa DOT 

and railroad industry will review the proposed design and provide comments and 
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recommendations as well as determine if full-scale crash testing of the proposed system 

is desired.  
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3 DEBRIS FENCE LITERATURE REVIEW  

3.1 State Designs 

States through their individual Departments of Transportation are responsible for 

maintaining design standards for roadside structures, including barriers and barrier 

attachments. A literature search was conducted to identify standard debris fence designs, 

also known as vandal protection fences, bridge safety fences, and railroad approach 

fences. Results of this review are summarized in Tables 1 through 3. 
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Table 2. State Fence Designs by Percent 

 
 

Table 3. State Parapet Attachment Methods by Percent 

Vertical Top 

Mounted

Vertical Back 

Mounted

Curved Top 

Mounted

Curved Back 

Mounted

Angled Top 

Mounted

33.33% 27.78% 16.67% 11.11% 11.11%

State Fence Designs

Base Plate Clamps Concrete Embedment

50.00% 38.89% 11.11%

State Parapet Attachment Methods
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3.1.1 California 

The California Department of Transportation (Caltrans) uses the combination of a 

vertical-shaped, concrete parapet and a top-mounted, vertical fence to safely keep 

pedestrian debris away from railroad tracks. The concrete railing used by Caltrans has a 

height of 40 in. (1,016 mm), and the debris containment fence is mounted 6 in. (152 mm) 

behind the front face of the parapet. This design is shown in Figure 1 [2]. 

The debris fence is attached to the top of parapet by anchoring the vertical posts 8 

in. (203 mm) into the concrete using a mortar backfill. The rectangular vertical posts 

extended a total of 6 ft-1½ in. (1.9 m) above the concrete parapet and were placed along 

the barrier every 5 to 10 ft (1.5 to 3.0 m). The chain-link fabric specified by Caltrans is 6 

ft (1.8 m) tall and is made of up a 1-in. (25-mm) diamond-shaped mesh and has a 

knuckled selvage on the top and bottom of the wire mesh. This mesh is connected to the 

fence structure by clamping the fence horizontally along the top of the system and 

vertically at the beginning and end of the parapet. The mesh is additionally connected to 

the vertical members with vinyl-coated, fabric ties spaced 1 in. (25 mm) apart. This 

design is shown in Figure 2 [2]. 
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Figure 1. California Concrete Barrier [2] 
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Figure 2. Chain Link Railing [2]
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3.1.2 Delaware 

Delaware DOT uses two different designs for debris fences. The first design is a 

vertical chain-link fence mounted on top of a parapet and connected to the parapet with a 

baseplate and four ⅝-in. (16-mm) diameter threaded anchor studs. The chain-link fabric 

of this system measures 5 ft (1.5 m) in height and contains a 1-in. (25-mm) diamond 

mesh made out of # 9-gauge wire. The system uses 2½ -in. (64-mm) nominal diameter 

pipes spaced in 10 ft (3 m) increments as vertical support posts, two 1¼-in. (32-mm) 

nominal diameter pipes as longitudinal stiffeners, and the fence is sloped downward 

using a ⅜-in. (10-mm) diameter truss rod. Single #9 gauge or double #13 gauge ties are 

used to connect the wire mesh to the vertical and horizontal members. The fence system 

is shown in Figure 3, and the mounting and connection details are shown in Figure 4 [3]. 

The second design used by the state of Delaware is a curved chain-link fence 

structure mounted on the top of a concrete rail, with a wire mesh height of 7 ft (2.1 m) 

and using the same base plate as the first system. The sizing and spacing of the vertical 

members, horizontal stiffeners, and the connection of the wire mesh to the members and 

stiffeners are the same for both Delaware designs, but a total of four horizontal stiffeners 

are used in this design. The mounting and connection details are shown in Figure 4, and 

the fence system is shown in Figure 5 [3]. 
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Figure 3. Delaware Bridge Safety Fence, Type 1 [3]
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Figure 4. Delaware Bridge Safety Fence, Connection Details [3] 
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Figure 5. Delaware Bridge Safety Fence, Type 2 [3]
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3.1.3 Florida 

The Florida Department of Transportation (FDOT) uses a curved fence mounted 

on the back of a concrete parapet to reduce the amount of debris on and around railroad 

tracks. The FDOT’s design standards show that this fence can be used in conjunction 

with a 36-in. (914-mm) tall, single-slope concrete parapet, but the size and type of barrier 

can vary [4]. 

Florida uses a curved chain-link wire mesh fence structure mounted to the back of 

a concrete parapet for railroad debris protection. Vertical posts are galvanized, schedule 

40 tubes, with a 3 in. (76 mm) nominal diameter. There are no structurally-stiff horizontal 

members, and lateral stiffness is obtained by using four cables wound within the wire 

mesh fence. Each vertical member is attached to the parapet with two pipe clamps, which 

are bolted to the concrete parapet with ⅜-in. (10-mm) diameter bolts. The chain-link 

fabric is composed of a 2-in. (51-mm) diamond mesh that is twisted at the top and has a 

knuckled selvage at the bottom of the fence. The mesh is connected to the posts and 

tension cables with wire ties. System drawings and connection details are shown in 

Figures 6 through 8 [4].
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Figure 6. Florida Bridge Fencing Over Railroad, Sheet 1 [4] 
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Figure 7. Florida Bridge Fencing Over Railroad, Sheet 2 [4]
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Figure 8. Florida Bridge Fencing Over Railroad, Sheet 3 [4]
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3.1.4 Idaho 

The Idaho Department of Transportation recommends using an overhanging fence 

mounted on a parapet to protect pedestrians near the travelled way. The fence posts are 

directly embedded into the concrete of a vertical 27-in. (686-mm) tall rail system and is 

placed along the centerline of the 9-in. (229-mm) wide vertical parapet [5]. 

The combination pedestrian fence system and parapet measure a total of 10 ft-1 

in. (3.1 m) in height. The vertical members of the combination system are made out of 

hollow steel tubes measuring 4 in. x 2 in. x 3/16 in. (102 mm x 51 mm x 5 mm), which 

are spaced between 5 ft and 6 ft-8 in. (1.5 and 2 m) apart. The fence is 8 ft-7 in. (2.6 m) 

tall and the upper 3 ft (0.9 m) of the posts are angled at 41 degrees over the roadway. The 

system uses five horizontal stiffeners made out of 2-in. x 2-in. x 3/16-in. (51-mm x 51-mm 

x 5-mm) hollow structural steel. There is an additional 2-in. x 2-in. x-3/16 in. (51-mm x 

51-mm x 5-mm) horizontal member that is located 15 in. (381 mm) above the parapet, 

which could mitigate vehicle protrusion from engaging the vertical posts. The members 

are then connected to a 2-in. (51-mm) square mesh wire fabric with wire ties. Details of 

this design are shown in Figure 9 [5].
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Figure 9. Idaho Protective Fence for Combination Rail and Parapet [5]
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3.1.5 Indiana 

 Indiana DOT currently utilizes a vertical pedestrian fence mounted on top of a 

Type FT or FC safety shape concrete parapet. The fence structure uses 2½-in. (64-mm) 

nominal diameter steel tube posts spaced 10 ft (3.0 m) on center. These posts are 

connected to upper and lower horizontal stiffeners with nominal diameters of 1¼ in. (32 

mm). The fence can be adjusted for the desired height based on the size of the vertical 

post and the placement of the horizontal stiffeners. Wire ties are connected to the steel 

frames spaced at 15 in. (381 mm) intervals or less. The vertical members are then secured 

to the concrete parapet through a base plate that is connected with four ⅝-in. (16-mm) 

diameter bolts. CAD details are shown in Figure 10 [6].
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Figure 10. Indiana Bridge Railing Pedestrian Fence [6] 
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3.1.6 Iowa 

The Iowa Department of Transportation uses a chain-link fence in conjunction 

with a pedestrian rail for debris and pedestrian containment purposes. The Iowa design 

consists of a 6-ft (1.8-m) tall chain-link fence containing a 2-in. (51-mm) diamond mesh, 

made out of no. 9 wire and has knuckled selvages at the top and bottom of the fence and 

the 6-ft ¾-in. (1.8-m) tall vertical tubes with a nominal pipe diameter of 2½ in. (64 mm) 

are mounted along the fence. Additionally, the 2-in. (51-mm) nominal diameter tubes 

were utilized on the bottom of the fence, and 1¼-in. (32-mm) diameter tubes were used 

along the top of the fence. The wire mesh was connected to the vertical members by 

using wire ties or clips spaced every 12 in. (305 mm), and the mesh was connected to the 

horizontal members using wire ties or clips spaced at 24 in. (610 mm) intervals [7]. 
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Figure 11. Iowa Protection Fence Design [7]
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3.1.7 Kansas 

 The Kansas Department of Transportation (KDOT) uses two different fences for 

pedestrian and debris control over railroads, which vary only on height. These fences are 

mounted to the back of a 35-in. (889-mm) tall, safety-shape concrete parapet [8]. 

 An 8-ft (2.4-m) tall fence is required when the shoulders of the bridge are less 

than 6 ft (1.8 m) wide, but a 6-ft (1.8-m) tall fence can be used when the bridge shoulders 

are greater than or equal to 6 ft (1.8 m). The round vertical posts consist of 2½-in. (64-

mm) nominal diameter pipes spaced 8 ft (2.4 m) on centers. Two 1¼-in. (32-mm) 

nominal diameter tubes are used as horizontal stiffeners at the top and bottom of the 

fence. Additional ⅜-in. (10-mm) diameter threaded rods are used to maintain tension in 

the mesh. The vertical posts are mounted to the back of the parapet with two pipe clamps 

and U-bolts, and the base of the each vertical member is connected to a piece of angle 

iron that is attached to the parapet using a ⅝-in. (16-mm) diameter bolt. The fence is 

made from 2-in. (51-mm) chain-link fabric that is galvanized or PVC coated, and it 

contains a knuckled selvage on both the top and bottom of the fence. This wire is then 

connected to the fence structure with #9 gauge wire ties. The taller design is shown in 

Figure 12, and the shorter design is shown in Figure 13 [8].
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Figure 12. Kansas Railroad Protective Fence for Shoulders Less than 6 ft [8]
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Figure 13. Kansas Railroad Protective Fence for Shoulders Greater than 6 ft [8] 
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3.1.8 Maryland 

Maryland DOT has two standard debris fence designs. The first system has a 

radial curve at the top of the fence and is mounted on top of a 32-in. (813-mm) tall 

vertical parapet. The other design is not curved and is mounted on top of an F shape 

concrete parapet [9]. 

 The radially-curved fence design is shown in Figures 14 and 15. The round 

vertical posts are 2½ in. (64 mm) nominal diameter, which are welded to base plates. 

Four ⅝-in. (16-mm) diameter bolts are used to attach the base plate to the top of the 

parapet. Four 1¼-in. (32-mm) nominal diameter, horizontal tube stiffeners are used for 

the fence frame. The fence is comprised of a #6 gauge mesh with a 2-in. (51-mm) gap 

opening connected to the frame with #9 gauge wire or double #13 gauge wire [9]. 

 The vertical fence design is shown in Figures 16 and 17. Vertical posts were 2½-

in. (64-mm) nominal diameter pipes welded to base plates and bolted to the top of the 

parapet with four ⅝-in. (16-mm) bolts. Two 1¼-in. (32-mm) nominal diameter horizontal 

tube stiffeners are attached to the post with saddle clamps. The fence is constructed with 

a #6 gauge mesh and a 2-in. (51-mm) gap opening. The chain link is then connected to 

the vertical and horizontal members of the system with #9 gauge wire or double #13 

gauge wire [9].
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Figure 14. Maryland Type I Chain Link Safety Fence [9]
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Figure 15. Maryland Type I Chain Link Safety Fence [9]



30 

 

 
Figure 16. Maryland Type II Chain Link Safety Fence [9] 
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Figure 17. Maryland Type II Chain Link Safety Fence [9]
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3.1.9 Minnesota  

The Minnesota Department of Transportation (MnDOT) uses a debris fence 

mounted on top of a vertical concrete parapet. The concrete railing that is currently 

implemented in Minnesota can vary between 32 and 44 in. (813 and 1,118 mm) in height, 

depending on the application. The top of the parapet measures 15 in. (381 mm) wide, and 

the front face of the fence is placed at a minimum of 4½ in. (114 mm) away from the 

front of the concrete parapet, as is shown in Figure 18 [10]. 

The top-mounted fence structure contains a 6-ft (1.8-m) tall, chain-link wire 

mesh. Vertical posts, measuring 6ft-1 in. (1.9 m) long, with a nominal diameter of 2½ in. 

(64 mm), were placed on 10-ft (3.0-m) centers. Cylindrical, 1¼-in. (32-mm) nominal 

diameter tubes were used as longitudinal stiffeners along the bottom of the mesh and 

along the top at expansion joints. An additional 7-gauge, galvanized steel tension wire 

was located at the top of the fence for increased longitudinal support. This wire could 

also potentially prevent fence elements from falling off the parapet in a high wind loading 

or impact event. A baseplate is used to connect the vertical posts to the concrete parapet. 

The wire mesh is connected to the members and tension wire with vinyl coated fabric 

ties. Additional details are shown in Figure 19 [10]. 
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Figure 18. Minnesota Concrete Parapet Type P-1 [10]
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Figure 19. Minnesota Wire Fence Design W-1 [10] 
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3.1.10 Nebraska 

The Nebraska Department of Transportation (NDOT) currently utilizes two 

different fence designs for debris protection over railway overpasses. Both of these fence 

designs are used in conjunction with a concrete parapet bridge rail. This concrete bridge 

rail parapet is shown below in Figure 20 [11]. 

One of the fence designs used by Nebraska contains a vertical 6-ft (1.8-m) tall, 

galvanized chain-link fence, with knuckled selvage at the top and bottom, mounted to the 

top of a concrete parapet with a base plate. The fence is placed at the centerline of the 

parapet, 7 in. (178 mm) back from the front face. Vertical posts, are 6-ft (1.8-m) long 

cylindrical tubes and are spaced 8 ft (2.4 m) on center along the top of the parapet and 

have a nominal diameter of 3 in (76 mm). The bottom of the vertical posts are connected 

to a base plate that is bolted to the top of the concrete parapet using ½-in. (13-mm) 

diameter U-bolts. This design also contains three, 1¼-in. (32-mm) diameter longitudinal 

stiffeners extending between the vertical posts. This fence design is shown in Figure 21 

[11]. 

Nebraska also utilizes a back-mounted, 7-ft (2.1-m) tall, debris fence system with 

galvanized chain-link fence. The vertical posts of the system, measuring 8 ft-10½ in. (2.7 

m) in length, are spaced 8 ft (2.4 m) on center and have a nominal diameter of 3 in. (76 

mm). The bottom of the post attaches into a bent plate that connects to the parapet 

through two ½-in. (13-mm) diameter bolts. Three, 1¼-in. (32-mm) pipe stiffeners are 

used to secure the chain link fabric and provide horizontal support. This fence design is 

shown in Figure 22 [11].
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Figure 20. Nebraska Closed Concrete Rail Bridge Deck [11]
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Figure 21. Nebraska Railroad Protection Fence Details [11] 
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Figure 22. Nebraska Fence Details with an Alternate Post Attachment [11]
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3.1.11 New Jersey 

New Jersey DOT uses a curved fence mounted on top of a 32-in. (813-mm) tall 

vertical parapet. The curved fence is constructed using 2-in. (51-mm) square vertical 

posts and connected with four 1.5-in. (38-mm) square horizontal stiffeners. Each vertical 

member is connected to a baseplate that is anchored to the parapet using two ¾-in. (19-

mm) diameter corrosion resistant steel bolts. The structural members are connected to a 

1-in. (25-mm) gap size diamond mesh with fabric ties spaced every 6 in. (152 mm) for 

the horizontal stiffeners and every 12 in. (305 mm) for the vertical posts. The geometric 

details of this design are shown in Figure 23 [12].
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Figure 23. New Jersey Curved Chain Link Fence [12]
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3.1.12 New York 

The New York State Department of Transportation (NYSDOT) uses a vertical 

fence mounted directly on the back of either a 34-in. (864-mm) tall, safety-shape barrier 

or a 42-in. (1,067-mm) tall, vertical barrier. The design utilizes 2½-in. (89-mm) nominal 

diameter pipes spaced in 10 ft (3 m) increments. The posts are attached to the back of the 

parapet with two clamps and four ⅜-in. (10-mm) diameter bolts. Three 1⅝-in. (41-mm) 

outside diameter horizontal stiffeners are evenly spaced at 2½ ft (0.76 m). The fence uses 

a 1-in. (25-mm) gap opening, diamond chain-link wire mesh made with 11-gauge wire. 

The system design is shown in Figure 24 [13].
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Figure 24. New York Pedestrian Fencing on Concrete Barrier and Parapet [13] 



43 

 

3.1.13 Oregon 

Oregon DOT currently utilizes a vertical pedestrian fence mounted on the back of 

an F-shape concrete bridge rail and a curved pedestrian fence mounted on the back of a 

vertical bridge rail [14]. 

Posts in the vertical fence design are 3½-in. (89-mm) nominal diameter tubes 

spaced 10 ft (3 m) on center. These posts are connected to the backside of the bridge rail 

with two clamps, which are fastened to the rail with ¾-in. (19-mm) diameter bolts. Two 

horizontal stiffeners consist of 1 ¼-in. (32-mm) diameter tubes, one located at the top and 

one located at the bottom. The stiffeners are connected to a 2-in. (51-mm) gap, diamond 

chain-link fence. This fence design is shown in Figure 25, which is labeled as a Type C 

Fence Section. Connection details are shown in Figure 26. 

The curved fence design contains vertical posts made of 4-in. (102-mm) nominal 

diameter tubes spaced at a maximum of 10 ft (3 m) apart. These posts are connected to 

the backside of the bridge rail with two clamps, which are anchored to the concrete with 

⅝-in. (16-mm) diameter bolts. Four horizontal stiffeners composed of 1¼-in. (32-mm) 

diameter tubes are used along the length of the system. The stiffeners are connected to a 

2-in. (51-mm) gap, chain-link fence. This fence design is shown in Figure 25, and is 

labeled as a Type A Fence Section. Connection details are shown in Figure 26 [14].
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Figure 25. Oregon Pedestrian Fence [14]



45 

 

 
Figure 26. Oregon Protective Fencing Details [14]
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3.1.14 Texas 

The Texas Department of Transportation (TxDOT) utilizes a debris fence 

mounted to the back of a concrete bridge rail. The Texas T211 vertical concrete parapet 

or the Texas T551 safety shape concrete parapet are recommended for the debris fence. 

Vertical posts consisting of 3½-in. (89-mm) nominal diameter pipes are spaced 8 

ft (2.4 m) on center. The vertical posts are connected to the backside of the concrete 

parapet with a clamp and two ⅝-in. (16-mm) diameter bolts, and a third ⅝-in. (16-mm) 

diameter bolt attached the post to the barrier directly. One horizontal stiffener is also 

used, which consists of 1¼-in. (32-mm) nominal diameter pipes threaded through sleeves 

mounted on the top of the posts. The frame is constructed from 9-gauge steel fabric with 

a 2-in. (51-mm) diamond gap opening, and it is attached to the posts and stiffeners using 

9-gauge steel wire ties. Along the bottom edge of the chain-link fence, a tensioned wire is 

attached to the fence using wire ties. The debris fence and concrete parapet are shown in 

Figures 27 and 28 [15].
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Figure 27. Texas 8 ft Chain Link Fence for Railroad Overpass [15]
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Figure 28. Texas 8 ft Chain Link Fence for Railroad Overpass Details [15]
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3.1.15 Wisconsin  

The Wisconsin DOT utilizes an angled fence mounted on top of a 32-in. (813-

mm) tall, vertical concrete parapet. The debris fence is mounted in the middle of the 

parapet, 3 in. (76 mm) behind its front face. 

The vertical posts are composed of 2-in. (51-mm) nominal diameter tubes and are 

spaced 10 ft (3 m) on centers. The posts are welded to base plates, which are attached to 

the top of the parapet using two ½-in. (13-mm) diameter anchor bolts. Three 1¼-in. (32-

mm) nominal diameter horizontal stiffeners are attached to the vertical posts using saddle 

clamps. The fence is constructed from 9-gauge, 2-in. (51-mm) gap opening, diamond 

mesh, chain-link fence attached to the posts and stiffeners with 9-guage wire ties spaced 

approximately 12 in. (305 mm) apart. The system and connection details are shown in 

Figure 29 [16].
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Figure 29. Wisconsin Chain Link Fence Details [16]
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3.2 Full-Scale Crash Test (TTI Test No. 42070-6) 

3.2.1 System and Testing Details 

 In August of 1995, the Texas Transportation Institute (TTI), located at Texas 

A&M University (TAMU), published a report titled Crash Testing and Evaluation of 

Retrofit Bridge Railings and Transitions [17]. This research report contained findings 

from the completion of full-scale crash tests completed at TTI. Test no. 42070-6 was 

conducted to determine the safety performance of a vandal protection fence mounted on 

top of a New Jersey concrete barrier [17]. 

 The full-scale crash test was conducted according to the AASHTO Guide 

Specifications for Bridge Railings Performance Level 2 (PL-2) criteria [18]. A 1991 Ford 

F250 pickup truck with a test inertial weight of 5,397 lb (2,448 kg) impacted the concrete 

barrier and vandal protection fence at 62.8 mph (101 kph) and at 20.2 degrees 

approximately 33 ft (10.1 m) downstream from the beginning of the system [17]. 

 The New Jersey barrier used in this full-scale crash test extended 100 ft (30.5 m) 

in length. The parapet had a height of 32 in. (813 mm), a thickness of 15 in. (381 mm) at 

the base, and tapering up to a minimum of 6 in. (152 mm) at the top. The barrier was 

reinforced with eight ½-in. (13-mm) longitudinal bars and multiple ⅝-in. (16-mm) 

vertical stirrups, spaced at 8-in. (203-mm) increments [17]. 

 A vandal protection fence was connected onto the back of the New Jersey barrier. 

The fence was 6-ft (1.8-m) tall. Vertical posts were 2½-in. (64 mm) nominal diameter 

tubes measuring 7.3-ft (2.2-m) long and were spaced 10 ft (3.0 m) on center. Posts were 

connected to the back of the parapet with two saddle clamps and anchored with ⅝-in. 

(16-mm) diameter bolts. Between the vertical posts, three horizontal stiffeners were used 
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to provide shear continuity and had outside diameters of 1⅝ in. (41 mm). The horizontal 

stiffeners were connected to the 1-in. (25-mm) gap, diamond mesh with wire ties. CAD 

details and pretest photos of the system are shown in Figures 30 through 32 [17].
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Figure 30. Vandal Protection Fence Details [17]
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Figure 31. Pretest Parapet and Fence Details [17]
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Figure 32. Pretest Fence and Connection Details [17]
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3.2.2 Test Results 

Test no. 42070-6 consisted of a 1991 Ford F-250 pickup truck impacting the New 

Jersey shape concrete barrier with vandal protection fence at a speed of 62.8 mph (101 

kph) and a 20.2 degree angle. All occupant safety risk values were within acceptable 

limits found in the AASHTO PL-2 standards. The test vehicle was safely redirected and 

test results were deemed successful. The length of contact spanned 17 ft (5.2 m) 

downstream from the point of impact, and the test vehicle exited the system at 49.5 mph 

(80 kph) and at an angle of 4.4 degrees. After the vehicle left the barrier, it came to rest 

91 ft (27.7 m) downstream from the initial impact point. Overall, the vehicle received 

minimal damage, which included bending of the stabilizer bar, floor pan, frame, and front 

axle on the right side of the vehicle. In addition to this localized bending, the windshield 

was cracked [17]. 

The system experienced minimal damage during the full-scale crash test. The 

lower edge of the chain-link wire was pushed behind the lower horizontal member 

between post nos. 5 and 6. Also, the middle horizontal member disconnected on the 

upstream side at post no. 5. Researchers determined that the presence of the fence itself 

did not result in an adverse safety performance. Post-test damage photos are shown in 

Figure 33, and a summary of the test results is shown in Figure 34 [17].
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Figure 33. Post-test Fence Damage [17]
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Figure 34. Summary of Test Results [17] 
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3.3 Minnesota Combination Traffic-Bicycle Bridge Rail  

In 1998, Midwest Roadside Safety Facility published a report about the design 

and crash tests of a bicycle bridge rail for the Minnesota Department of Transportation. 

Two full-scale crash tests were performed on this design, as shown in Figures 35 through 

37, which was deemed acceptable in accordance with requirements dictated by NCHRP 

Report No. 350 [19]. 

The test construction included two cables placed within the tubular rails to 

prevent detachment of large pieces of debris from causing hazardous conditions to 

vehicles and or behind pedestrians below and/or behind the bridge. The usage of cables to 

prevent the detachment of large pieces of the bicycle rail structure may be beneficial as a 

means of containing debris produced during large truck impacts with the debris fence. 

This idea will need to be utilized with the design; since, there is a very high chance that 

pieces of the structure will break and fall onto the railway tracks under impact scenarios. 

The test construction also tapered the two cables down to the backside of the rail. 

This configuration allows the cables to be terminated safely and moves the tensioning 

components to the backside of the rail and farther away from any impacting vehicles.  
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Figure 35. Minnesota Combination Traffic-Bicycle Bridge Rail Design Details  



61 

 

 
Figure 36. Minnesota Combination Traffic-Bicycle Bridge Rail Design Details  
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Figure 37. Tension Cable Taper and Rail Design 
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3.4 Caltrans Barrier Mounted Sign and Signpost 

In 2011, Caltrans published a report detailing a full-scale crash test of a barrier 

mounted sign and signpost. One full-scale crash tests were performed on this design, as 

shown in Figures 38 and 39. The barrier redirected the vehicle but the impact created a 

high risk to occupants and was not deemed acceptable in accordance with requirements 

dictated by NCHRP Report No. 350 [20]. 

The sign post consisted of a 108-in. (2748-mm) tall post with a 4.0-in. (102-mm) 

outside diameter. The sign configuration consisted of two rectangular 36 in. (914 mm) by 

60 in. (1524 mm) panels placed back to back. The post was mounted to the barrier 

through the usage of a ⅜-in. (10-mm) thick saddle, connected with two 1.0 in. (25 mm) 

bolts.  

The structural adequacy and vehicle trajectory for the test were deemed 

acceptable but the occupant risk was deemed unacceptable. The hood penetrated the 

windshield and would have covered the occupants in glass in a real world crash scenario. 

Additionally, the front grill broke off during the test and would have been a large hazard 

to the opposing traffic lanes.  

This sign and post configuration was well within the impacting vehicles ZOI. This 

failed test demonstrates the importance of moving any barrier attachments as far out of 

the ZOI as possible.  
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Figure 38. Barrier Mounted Sign Test Article 

 
Figure 39. Barrier Mounted Sign Vehicle Impact 
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3.5 Real-World Crashes 

Parapet-mounted fences are common throughout the United States, but because of 

the lack of previous full scale crash data, their safety performance during real impacts has 

not been determined. In an attempt to understand the real-world performance of these 

devices, three different anecdotal vehicular impact events were analyzed.  

3.5.1 Ohio Vandal Protection Fence Crash 

An article published on April 5, 2018 describes an impact between a vehicle and a 

fence mounted on a parapet on the Valley View Bridge in Valley View, Ohio. The impact 

event began when a vehicle on the bridge lost control and careened across multiple lanes 

and impacted another vehicle that was heading in the same direction. The second vehicle 

then was pushed into the bridge and fence system [21]. 

The vertical posts of the fence were anchored directly into the top of the parapet, 

and the fence structure extended 10 ft (3 m) above the concrete. One horizontal stiffener 

was placed in the middle, 5 ft (1.5 m), above the parapet. The article states that it is 

believed that if the vandal protection fence wouldn’t have been there, the vehicle would 

have most likely plummetted more than 200 ft (70.0 m) off of the bridge. The individual 

who impacted the barrier was taken to the hospital for minor injuries [21]. 
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Figure 40. Valley View Vandal Protection Fence Crash [21] 

3.5.2 NASS Crash Data  

The National Highway Transportation Traffic Safety Administration (NHTSA) 

compiles information regarding vehicular crashes within the United States. This resource 

was used to locate two real-world crashes between motor vehicles and parapet-mounted 

containment fences.  

One such impact event occurred in April 2014 between a motor vehicle and a 

parapet-mounted fence located in the median. The vehicle was travelling approximately 

59.5 mph (95.8 kph) at an angle of 15 degrees when it departed the travelled way and 

impacted the parapet and fence combination, as shown in Figure 41. The vehicle then 

careened across the road and impacted another traffic barrier on the other side. During 

this event, the vehicle did not override the parapet and interact with the fence, which 

resulted in no vehicle snagging. Overall, the parapet damage was minimal, but the vehicle 

damage was extensive, as shown in Figure 42, which was concentrated on the front 
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passenger side of the vehicle. It is believed that damage was related to the second impact 

event [22]. 

 
Figure 41. View of Barrier at Point of Impact [22] 

 
Figure 42. Vehicle Damage [22] 
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Another event consisted of a crash with a sequence of hazards, where the most 

severe was a concrete barrier arrangement. Vehicle speed at the point of impact was 

estimated to be 41 mph (66.0 kph), and the impact angle was 6 degrees with respect to 

the roadway. Although this non-crashworthy system is not recommended for use on the 

National Highway System (NHS), it is important to note that no snagging or intrusion 

occurred into the fence during impact. The vehicle and system damage were minimal, but 

concrete spalling occurred near one vertical post anchor. The impact location and vehicle 

damage is shown in Figures 43 and 44 [23]. 

 

 
Figure 43. Point of Impact [23] 
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Figure 44. Vehicle Damage [23] 

3.6 Zone of Intrusion 

The Zone of Intrusion (ZOI) in roadside safety nomenclature is defined as the 

lateral extent that a vehicle extends beyond the top-front corner of a barrier during an 

impact scenario. The ZOI is a very important parameter when attempting to mount items 

on top of both rigid and non-rigid parapets, because of the potential for the vehicle to 

extend over a barrier and snag on vertical elements. This snag event can lead to excessive 

occupant compartment accelerations, projected components, and vehicle redirection into 

other lanes of traffic.  

3.6.1 Guidelines for Attachments to Bridge Rails and Median Barriers  

In February 2003, MwRSF published a report titled Guidelines for Attachments to 

Bridge Rails and Median Barriers [24]. This research report quantified ZOI values for 
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multiple parapet geometries from historical crash test data. This effort was completed by 

obtaining video and pictures from previous tests and then using video analysis techniques 

to determine the lateral extent of the vehicle behind the top-front corner of the parapet. 

The research team initially hypothesized that the barrier height would relate best 

to the amount of intrusion, but the test data was too limited to confirm this assumption. 

Researchers observed that the bumper and bottom portion of the front fender of the 

pickup truck were typically crushed during rigid barrier impacts, while the engine hood 

and upper front fender panel generally extended over the top of the barrier. This behavior 

resulted in the greatest intrusion, generally occurring early in the impact event.  

Researchers reviewed crash tests involving rigid barriers ranging from 27¾ in. 

(705 mm) to 42 in. (1,067 mm) tall, impacted with pickup trucks and cars. The maximum 

lateral extents over the top leading edge of the rigid barriers were determined using high-

speed video analysis. The ZOI for the pickup truck varied between 8 and 30 in. (203 and 

762 mm), and the ZOI for the car varied between 0 and 8 in. (0 and 203 mm), depending 

on the parapet geometry and attachments. The report notes that if posts are mounted at 

least 7 in. behind the front face of a rigid barrier, the risk of vehicle snag is greatly 

reduced, but the authors also noted that offsetting posts to the back of the barrier will not 

eliminate all of the vehicle snag concerns for all barriers and impact conditions. ZOI 

values obtained for crash tests on small cars and pickup trucks are shown in Table 4. 
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Table 4. ZOI Values [24] 

 
 

3.6.2 Zone of Intrusion Study 

In October 2010, MwRSF published a research report titled Zone of Intrusion 

Study [25]. This report detailed the results of nonlinear finite element testing using LS 

Barrier Class Barrier Name
Barrier 

Height (in.)
Vehicle

Maximum 

Intustion (in.)

Vehicle 

Component 

Small Car 6 Hood / Fender

Pickup 8 Hood / Fender

Single Slope Concrete Bridge 

Rail
32 Pickup 12 Hood / Fender

Small Car 2 Hood / Fender

Pickup 8 Hood / Fender

813-mm (32-in.) New Jersey 

Safety Shape Bridge Rail
32 Pickup 18 Hood / Fender

813-mm (32-in.) New Jersey 

Rail
32 Pickup 9 Hood / Fender

Pickup 16 Hood / Fender

Pickup 14 Hood / Fender

32 Small Car 8 Hood

32 Pickup 15 Hood / Fender

Texas Tyle T411 Bridge Rail 32 Pickup 24 Hood / Fender

Small Car 0 None

Pickup 13 Hood / Fender

Steel Bridge Rail with Tube Rail 

System for Transverse Decks
36 Pickup 21 Hood / Fender

Texas Type T6 Bridge Rail 27.75 Pickup 30 Hood / Fender

California Type 115 Bridge Rail 30 Pickup 30 Hood / Fender

Small Car 6 Hood

Pickup 11 Fender

Small Car 3 Hood

Pickup 12 Hood / Fender

Small Car 0 None

Pickup 24 Hood

Small Car 0 None

Pickup 10 Hood

GC-8000 Bridge Rail for 

Longitudinal Decks
33 Pickup 24 Hood / Fender

Wood Bridge Rail with Curb 

System for Transverse Decks 
33 Pickup 21 Hood / Fender

762-mm (30-in.) New Jersey 

Safety Shape
30

Concrete with 

Sloped Face
813-mm (32-in.) F-Shape Bridge 

Rail
32

Illinois 2399 Bridge Rail 32

Steel Tubular Rails 

on Curbs

Nebraska Open Concrete Bridge 

Railing (AASHTO Bridge 

Guide Specifications)

29

813-mm (32-in,) Vertical Wall

Illinois Side-Mounted Bridge 

Rail
32

NETC Bridge Rail, Curb 

Mounted
34

 Concrete with 

Vertical Face 

Steel Tubular Rails

Timber Bridge Rails

Minnesota Combination Bridge 

Rail 
35

BR27C Bridge Railing on Deck 42

Concrete / Steel 

Combination Bridge 

Rails 
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DYNA simulations to investigate the ZOI for an NCHRP-350 2000P pickup truck [26]. 

This pickup truck simulation impacted a 40-in. (1,016-mm) tall, F-shape parapet at TL-2 

and TL-3 testing conditions. The ZOI was determined to be 5 in. (127 mm). It was 

observed that with a barrier height of 40 in. (1,016 mm), the vehicle protrusion over the 

barrier was limited to the front corner of the hood and a small section of the fender.  

Under NCHRP Report No. 350 TL-2 test no. 2-11 conditions [26], 45 mph (72.4 

kph) and at a 25 degree angle, the ZOI for the pickup truck was predicted to be between 

1.8 in. (46 mm) and 2.5 in. (64 mm). The authors attribute the variation in this ZOI value 

to the mesh quality of the simulation model and the overall system geometry.  

3.6.3 Zone of Intrusion for Permanent 9.1-Degree Single-Slope Concrete 

Barriers 

In March 2014, MwRSF published a research report that detailed efforts involving 

simulation results from a Wisconsin Department of Transportation (WisDOT) single-

slope concrete barrier. ZOI values were calculated for a pickup truck at three different 

single-slope parapet heights. The ZOI for 36, 42, and 56-in (914, 1,067, and 1,422-mm) 

tall barriers were 12.2 in. (310 mm), 6.4 in. (163 mm) and 0 in. (0 mm), respectively. 

Additionally, during this simulation effort, the left fender always protruded the farthest 

behind the barrier, which was followed by the corner of the engine hood [27]. 

3.6.4 Signs on Concrete Median Barriers 

The Texas A&M Transportation Institute (TTI) completed a study in April 2013 

to determine the safety of mounting signs on the top of concrete median barriers [28]. 

This report detailed study efforts, including a literature review, simulation effort, and four 

full-scale crash tests. 
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The four full-scale crash tests completed by TTI occurred with a 2270P pickup 

truck under MASH TL-3 guidelines. During this testing series, a 2.5-in. (64-mm) outside 

diameter schedule 80 pipe was used to mount to the sign and the parapet, and different 

connection methods were tested between each individual test. During all of the crash 

tests, the vehicle extended over the front face of the barrier and contacted the sign and 

sign support assembly, but no snagging occurred. The authors determined that that the 

addition of the sign assembly did not decrease the safety of the concrete parapet [28]. 

3.7 Lincoln Nebraska Fence Examples 

A survey of two different fences used in close proximity to the travelled way was 

completed in Lincoln, Nebraska. The first design consisted of an aesthetic vertical debris 

fence mounted on top of a concrete parapet. The second system was very similar to the 

protective fence used by Iowa, as is shown in Figure 11.  

3.7.1 Aesthetic Debris Fence 

The first fence example that was analyzed in Lincoln, Nebraska is located near the 

corner of North Antelope Parkway and Salt Creek Roadway. This design consists of a 

fence and baseplate mounted on the top of a vertical concrete bridge rail. This rail 

measures 42 in. (1067 mm) tall, and the debris fence is mounted in the middle of the rail, 

8 in. (203 mm) behind its front face. 

The aesthetic fence design is composed of wire mesh panels containing cyclic 

wave designs on both the top of the mesh structure and on panels that are bolted to the 

mesh. Rectangular vertical posts, 5 in. x 4 in. x 3/8 in. (127 mm x 102 mm x 10 mm), 

measuring 8 ft-7 ½ in. (2.6 m) were placed 8 ft (2.4 m) on center. These posts were 

connected to panels containing two horizontal stiffeners, one at the bottom and one 4 ft 
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(1.2 m) above the parapet and another aesthetic stiffener at the top containing a 

sinusoidally-varying design. These panels also contained vertical posts at the beginning 

and end of each panel section. All vertical posts and longitudinal stiffeners located in the 

mesh structure were fabricated with rectangular steel tube measuring 2 in. x 2 in. x ¼ in. 

(51 mm x 51 mm x 6 mm). The wire mesh panels were connected to the vertical posts 

with a total of six ¼-in. (6-mm) self-tapping screws. A baseplate measuring 8 in. x 8 in. x 

½ in. (203 mm x 203 mm x 13 mm) , was used to secure the vertical posts to the concrete 

bridge rail and was held in place with four 6-in. (152-mm) long by 3/8-in. (10-mm) 

diameter anchor bolts. CAD details of both the fence and parapet design are shown in 

Figures 45 through 47. 
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Figure 45. Aesthetic Debris Fence Bridge Rail Details  
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Figure 46. Aesthetic Debris Fence Bridge Parapet and Placement Details  
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Figure 47. Aesthetic Debris Fence Details  
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This aesthetic debris fence design was located close to the design headquarters of 

MwRSF. This design was examined, because some panels within the fence structure were 

missing, as shown in Figures 48 through 50. Under closer inspection, it was discovered 

that the self-drilling screws used to secure the fence panels to the vertical posts were 

breaking off and ratchet straps were being used to secure the panels to the posts, as 

shown in Figures 50 and 51. This design shows the importance of correctly securing the 

fence and highlights the need for stronger connections to guarantee that the fence 

components do not fall onto the roadway or railway tracks.  

 
Figure 48. Aesthetic Debris Fence Overview  

 
Figure 49. Aesthetic Design Missing Panels  



79 

 

 
Figure 50. Aesthetic Design Missing Panel  

 
Figure 51. Aesthetic Design Broken Screws  
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3.7.2 Combination Rail and Pedestrian Fence 

Another design used in Lincoln, Nebraska, and located on the 27th Street and Salt 

Creek Roadway overpass, is very similar to the Iowa combination pedestrian rail and 

debris fence shown in Figure 11. This design, as shown in Figure 52, is representative of 

the common, curved, fence designs used by states for pedestrian and debris containment. 

There are three longitudinal stiffeners used within the design, one is placed at the bottom 

of the fence and the other two are within the curved upper section of the structure. There 

is also a hand rail that runs longitudinally along the length of the system. Iowa DOT does 

not wish to use this system in conjunction with any sort of pedestrian walkway so an 

additional handrail would not be needed.  

 
Figure 52. Lincoln Pedestrian Fence  
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3.8 Design Standards  

3.8.1 Iowa Chain-Link Fence Standards 

Iowa DOT currently specifies criteria for the installation and maintenance of 

chain-link fence near the roadway. These guidelines were analyzed to determine design 

requirements for a debris fence mounted on top of a concrete parapet [29]. 

The structural elements used for both the vertical posts and horizontal stiffeners 

must meet one of the following requirements:  

1.  AASHTO M 181 Grade 1 guidelines or ASTM F1083 Schedule 40 and 

2.  AASHTO M 181 Grade 2 or ASTM F1043 Group IC 

The chain-link fabric used in the debris fence design, unless otherwise noted in 

contract documents, must include:  

1. 9-gauge coated wire with a breaking strength of 1,290 pounds; 

2. Height of fabric of 72 inches; 

3. Selvage knuckled at both the top and bottom; and 

4. Mesh size 2 ± ⅛ inches. 

Additionally, the chain-link fabric must conform to one of the following options: 

1. Zinc coated fabric meeting requirements of ASTM A 392, Class 2 or 

AASHTO M 181 Type 1, Class D; 

2. Aluminum coated fabric meeting requirements of AASHTO M181, Type II; 

and 

3. PVC coated fabric requirements of ASTM F668, Class 2b or AASHTO M181, 

Type IV, Class B Fused. 



82 

 

Any tension wires used within a parapet-mounted debris fence design in Iowa 

shall either meet requirements of AASHTO M 181 or one of the following:  

1. ASTM A 824 or A 817, Type II, Class 3; 

2. ASTM A 824 or A 817, Type 1; and 

3. ASTM F 1664, PVC (Vinyl) Coated, Class 2b.  

Brace and tie wires must meet requirements of ASTM F 626 and be either zinc or 

aluminum coated. They must also meet these additional requirements:  

1. Where specified, round metallic-coated tie wires, clips and hog rings shall be 

polymer coated to match the color of the chain-link fabric as selected from 

ASTM 934 and 

2. The coating process and metallic-coated core wire materials shall be in 

accordance with ASTM F 668. 

The fittings used to secure the chain link to the structural members must comply 

with the following:  

1. Attach braces to posts using fittings which will hold both the post and the post 

and brace rigidly;  

2. Use diagonal truss rods of ⅜-in. diameter, round steel rods with appropriate 

commercial means for tightening; 

3. Furnish a locknut or other device to hold the tightening device in place; 

4. Furnish a suitable sleeve or coupling device, recommended by the 

manufacturer, to connect sections of top rail and to provide for expansion and 

contraction; 
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5. Use stretcher bars no less than ⅜ in. diameter, or equivalent cross sectional 

area, with suitable clamps for attaching fabric to corner, end, or gate posts; 

and 

6. All fittings must conform to AASHTO M 181 or ASTM F 626. 

Anchor bolts used to secure the debris fence to the parapet must comply with the 

following requirements:  

1. Use full-length galvanized bolts; 

2. Comply with ASTM F 1554, Grade 105, S4 (-20°F); 

3. Threads are to comply with ANSH/ASME B1.1 for UNC thread series, Class 

2A tolerance; 

4. The end of each anchor bolt intended to project from the concrete is to be 

color coded to identify the grade; and  

5. Do not bend or weld anchor bolts. 

Any nuts that are used within the debris fence design must conform to the 

following specifications:  

1. Comply with ASTM A 563, Grade DH or ASTM A 194, Grade 2H; 

2. Use heavy hex; 

3. Use ANSI/ASME B1.1 for UNC thread series, Class 2B tolerance; and 

4. Nuts may be over-tapped according to the allowance requirements of ASTM 

A563.  

Any washers used in the system must comply with ASTM F 436 Type 1 

requirements. The debris fence design may include the need to weld some of the 

structural members, and Iowa Department of Transportation states that these welds must 
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comply with ANSI/AWS D1.1 Structural Welding Code procedures and requirements. 

The Iowa standards require that items along the roadway be able to withstand three-

second wind gusts up to 90 mph (144.8 kmh). 

3.8.2 Union Pacific and BNSF Standards 

Rail companies, such as Union Pacific and BNSF, require certain guidelines when 

parapet-mounted fencing is used above railway overpasses in Iowa. They require that on 

sidewalk or trail facilities that the top of the fence should be curved to discourage 

climbing over the fence. The standards also note that when BSNF and Union Pacific ask 

for parapet-mounted fences, the Iowa DOT generally proposes that the fence be omitted 

in lieu of a 44-in. (1,118 -mm) tall concrete barrier [29].
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4 DESIGN AND ANALYSIS – DEBRIS FENCE 

4.1 Overview 

This chapter focuses primarily on the vertical posts in the debris fence. The Iowa 

DOT debris fence was to include the design of six main components: 

• Bridge rail / parapet 

• Vertical posts 

• Post-to-rail attachments 

• Horizontal fence stiffeners (frame) 

• Chain link mesh  

• Chain link attachments to posts and horizontal stiffeners  

Due to limitations on time, this thesis was focused on the selection of the parapet 

and vertical posts. Additional recommendations were provided for the other members, 

but the sizing, selection, and design of those components were delegated for future 

analysis. 

4.2 Debris Fence Design Objectives 

State DOT standards were summarized, and an internal ranking system was 

applied based on debris fence safety, constructability, and cost. The use of standardized 

components was also prioritized. Based on this review, the preferred configurations were 

the Florida DOT design, which utilized vertical round posts and two saddle brackets to 

the back side of the parapet, and the Texas DOT design, which utilized a single saddle 

bracket and a lower through bolt which passed through the post into the back side of the 

parapet. 
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Iowa DOT was shown the results of the literature review and state DOT 

standards. The following attributes of the debris fence were prioritized based on that 

meeting: 

• A single, standard parapet shape would be selected for the debris fence 

installation. Adaptations to other bridge rail or parapet shapes would be 

considered at a future time. 

• Posts were to be placed on the back side of the parapet to reduce 

engagement within the impacting vehicle’s ZOI. 

• Two saddle clamps were recommended, which would fasten the post to 

the back side of the parapet. 

• No structurally-stiff horizontal stiffeners would be placed within 

passenger vehicle ZOI. 

• Post-to-rail attachments (specifically, bolted attachments) should not 

experience damage, result in concrete cracking, or require replacement 

during a design impact scenario.   

Post sizing and spacing for the debris fence were determined based on a structural 

analysis. Using the maximum flexural and shear capacity of the selected post size, the 

clamp spacing was selected to allow the posts to yield backward during an impact 

scenario. Based on additional discussion, the Iowa DOT stated that they would prefer to 

limit the amount of horizontal members in the design. This justification was based on 

their concern that the connection points between the horizontal members could fail during 

an impact and spear into an impacting vehicle. Because these horizontal members add to 

the overall aesthetics of the fence, the Iowa DOT stated that they wished to retain one 
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member at the top of the fence. To make up for the lack of horizontal stiffness, the Iowa 

DOT stated their preference to use longitudinal tension wires. These wires offer an added 

benefit of limiting large pieces of the debris fence from falling off the parapet during an 

impact event. When the debris fence experiences a vehicular impact, it is very important 

to limit the damage of the anchor rods, which will guarantee that they do not have to be 

replaced. Thus, the capacity of the vertical posts must be limited to allow them to fail far 

before the anchor connections. The design and analysis are explained in further detail in 

the following sections.  

4.3 Parapet Selection 

Recently, MwRSF crash tested an optimized bridge railing under MASH TL-4 

conditions for the Midwest Pooled Fund Program. The final report of this research has 

not been completed, but this test has been deemed successful under the MASH TL-4 

criteria. The Iowa DOT has specified that this barrier will be their new standard 

configuration under TL-4 impact conditions, and they have requested that the selected 

debris fence prototype be used in conjunction with this TL-4 optimized bridge railing.  

The railing, as shown in Figures 53 and 54, consists of a single-slope, half-

section, reinforced concrete parapet and stands 36-in. (914-mm) tall after placement of a 

3-in. (76-mm) overlay. The base of the barrier measures 10 in. (254 mm) in width and 

tapers up to a minimum of 8 in. (203 mm) at the top of the structure. The railing consists 

of multiple longitudinal and vertical pieces of rebar with the top two longitudinal bars 

being 4 in. (102 mm) and 5¼ in. (133 mm) below the top of the railing. A design 

variation incorporating head ejection criteria is compared to the crash-tested design in 

Figure 55, which has the second piece of longitudinal rebar 6.62 in. (168 mm) below the 
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top of the barrier. Thus, any connections to the backside of the bridge railing should be at 

a minimum of 7¾ in. (197 mm) below the top of the railing to prevent any chance of the 

rebar being struck when holes are drilled into the parapet for the placement of anchors.  
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Figure 53. TL-4 Bridge Rail  
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Figure 54. TL-4 Bridge Rail Rebar Placement 
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Figure 55. Comparison of TL-4 Barriers  

4.4 Loading Conditions 

The components in this debris fence can potentially be subjected to a total of five 

different loading conditions as shown: 

1. A lateral load during a vehicular impact; 

2. A longitudinal load during a vehicular impact; 

3. A wind load on the front of the fence; 

4. A wind load on the back of the fence and; 

5. A dead load from the weight of the fence material, which will always be 

present. 

During any of these loading conditions, it is paramount that the anchor 

connections in the back of the parapet are maintained and are not subjected to forces that 

could cause them to fail. This decision is based on the difficulty and expense with drilling 
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the holes and replacing the anchors. Thus, it is preferred that the vertical posts and saddle 

brackets fail before the anchorage connections. The following sections will 

mathematically detail each of the loading conditions. 

4.4.1 Lateral Impact Loading 

A lateral vehicular impact into the debris fence will place a load onto the vertical 

posts and chain-link, which will then be transferred through the posts and into the saddle 

clamps and anchor connections as a tensile load. In this loading scenario, the largest 

tensile load will be transferred into the top brackets and anchor connections. The tensile 

load within the lower bracket will be negligible. Thus, the contribution of the lower 

bracket was not involved with this mathematical derivation to represent a worst case 

scenario. A diagram showing the lateral loading is shown in Figure 56, a definition of the 

variables is shown in Table 5, and the full mathematical derivation is given in Appendix 

A. 
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Figure 56. Lateral Impact Loading Configuration 

Table 5. Lateral Impact Loading Variables 

Variable Definition

Fi Impact Force

Fa Tensile Force at Top Clamp

Fr Reaction Force at Bottom of Post

Li Distance Between Impact and Top of Parapet

La Distance Between Top Clamp and Top of Parapet

Lr Distance Between Bottom of Post and Top of Parapet
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A static force balance and moment sum at points i, a, and r of the lateral impact 

yields the following equations: 

∑ 𝐹𝑥 = 0 = −𝐹𝑖 + 𝐹𝑎 − 𝐹𝑟 (1) 

∑ 𝑀𝑖 = 0 = 𝐹𝑎(𝐿𝑖 + 𝐿𝑎) − 𝐹𝑟(𝐿𝑟 + 𝐿𝑖) (2) 

∑ 𝑀𝑎 = 0 = 𝐹𝑖(𝐿𝑖 + 𝐿𝑎) − 𝐹𝑟(𝐿𝑟 − 𝐿𝑎) (3) 

∑ 𝑀𝑟 = 0 = 𝐹𝑖(𝐿𝑖 + 𝐿𝑟) − 𝐹𝑎(𝐿𝑟 − 𝐿𝑎) (4) 

𝐹𝑖 =
𝐹𝑟(𝐿𝑟 − 𝐿𝑎)

(𝐿𝑖 + 𝐿𝑎)
 (5) 

𝐹𝑎 =
𝐹𝑟(𝐿𝑖 + 𝐿𝑟)

(𝐿𝑖 + 𝐿𝑎)
 (6) 

𝐹𝑟 =
𝐹𝑎(𝐿𝑖 + 𝐿𝑎)

(𝐿𝑖 + 𝐿𝑟)
 (7) 

 

Next, the shear and moment diagrams can be obtained and are shown in Figure 

57. 
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Figure 57. Shear and Moment Diagrams for Lateral Impact 

The shear diagram shows that the maximum force occurs at the top clamp during 

a lateral impact. The moment diagram shows that the maximum moment during a lateral 

impact occurs at the top clamp, which can be stated mathematically with the following 

equations: 

𝑀𝑎 = 𝐹𝑖(𝐿𝑎 + 𝐿𝑖) (8) 

𝑀𝑎 = 𝐹𝑟(𝐿𝑟 − 𝐿𝑎) (9) 

 

4.4.2 Longitudinal Impact Loading 

A longitudinal vehicular impact into the debris fence will place a load onto the 

vertical posts and chain-link, which will then be transferred through the posts and into the 
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saddle clamps and anchor connections as a shear load. A diagram showing the 

longitudinal loading is shown in Figure 58, a definition of the variables is shown in Table 

6, and the full mathematical derivation is given in Appendix B. 

 
Figure 58 Longitudinal Impact Loading Configuration 

Table 6. Longitudinal Impact Loading Variables 

Variable Definition

Fi Impact Force

Fa Shear Force at Top Clamp

Fb Shear Force at Bottom Clamp

Li Distance Between Impact and Top of Parapet

La Distance Between Top Clamp and Top of Parapet

Lb Distance Between Bottom Clamp and Top of Parapet
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A static force balance and moment sum at points i, a, and b of the longitudinal 

impact yields the following equations: 

∑ 𝐹𝑥 = 0 = −𝐹𝑖 + 𝐹𝑎 − 𝐹𝑏 (10) 

∑ 𝑀𝑖 = 0 = 𝐹𝑎(𝐿𝑖 + 𝐿𝑎) − 𝐹𝑏(𝐿𝑏 + 𝐿𝑖) (11) 

∑ 𝑀𝑎 = 0 = 𝐹𝑖(𝐿𝑖 + 𝐿𝑎) − 𝐹𝑏(𝐿𝑏 − 𝐿𝑎) (12) 

∑ 𝑀𝑏 = 0 = 𝐹𝑖(𝐿𝑖 + 𝐿𝑏) − 𝐹𝑎(𝐿𝑏 − 𝐿𝑎) (13) 

Through substitution and solving these equations, the forces at i, a, and b can be 

determined: 

𝐹𝑖 =
𝐹𝑏(𝐿𝑏 − 𝐿𝑎)

(𝐿𝑖 + 𝐿𝑎)
 (14) 

𝐹𝑎 =
𝐹𝑏(𝐿𝑖 + 𝐿𝑏)

(𝐿𝑖 + 𝐿𝑎)
 (15) 

𝐹𝑏 =
𝐹𝑎(𝐿𝑖 + 𝐿𝑎)

(𝐿𝑖 + 𝐿𝑏)
 (16) 

 

Next, the shear and moment diagrams can be obtained and are shown in Figure 

59. 
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Figure 59. Shear and Moment Diagrams for Longitudinal Impact 

The shear diagram shows that the maximum force occurs at the top clamp during 

a lateral impact. The moment diagram shows that the maximum moment during a 

longitudinal impact occurs at the top clamp. This can be stated mathematically with the 

following equations: 

𝑀𝑎 = 𝐹𝑖(𝐿𝑎 + 𝐿𝑖) (17) 

𝑀𝑎 = 𝐹𝑏(𝐿𝑏 − 𝐿𝑎) (18) 

4.4.3 Front Wind Loading 

Lateral wind blowing onto the front side of the fence structure will place a load 

onto the vertical posts and chain-link mesh, which will then be transferred through the 

posts and into the saddle clamps and anchor connections as a tensile load. In this loading 

scenario, the largest tensile load will be transferred into the top brackets and anchor 
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connections. Thus, the lower bracket did not represent a worst-case design scenario. A 

diagram showing the front wind loading scenario and its corresponding shear and 

moment diagrams are shown in Figure 60, a definition of the variables is shown in Table 

7, and the full mathematical derivation is given in Appendix C. 

 
Figure 60. Front Wind Loading Configuration 
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Table 7. Front Wind Loading Variables 

 
 

To simplify this situation, the total effective wind load can be transferred to a 

point load at its centroid. A diagram showing this scenario and its corresponding shear 

and moment diagrams are shown in Figure 61. Note that this simplified loading condition 

is similar to the later and longitudinal impact loading scenarios.  

 
Figure 61. Simplified Loading Configuration 

Variable Definition

fw Wind Load Per Unit Length

Fw Total Effective Wind Load

Fa Tensile Force at Top Clamp

Fr Reaction Force at Bottom of Parapet

Hw Chain-Link Height

Lw Distance Between Center of Wind Load and Top of Parapet

La Distance Between Top Clamp and Top of Parapet

Lr Distance Between Bottom of Post and Top of Parapet
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Note, that the forces and moments obtained through the simplified model are 

equivalent to the actual configuration and only differ in the look of the shear and moment 

diagram. A static force balance and moment sum at points w, a, and r, of the front wind 

loading simplified scenario yields the following equations: 

∑ 𝐹𝑥 = 0 = −𝐹𝑤 + 𝐹𝑎 − 𝐹𝑟 (19) 

∑ 𝑀𝑤 = 0 = 𝐹𝑎(𝐿𝑤 + 𝐿𝑎) − 𝐹𝑟(𝐿𝑟 + 𝐿𝑤) (20) 

∑ 𝑀𝑎 = 0 = 𝐹𝑤(𝐿𝑤 + 𝐿𝑎) − 𝐹𝑟(𝐿𝑟 − 𝐿𝑎) (21) 

∑ 𝑀𝑟 = 0 = 𝐹𝑤(𝐿𝑤 + 𝐿𝑟) − 𝐹𝑎(𝐿𝑟 − 𝐿𝑎) (22) 

Through substitution and solving these equations the forces at a, and r can be 

determined: 

𝐹𝑎 =
𝐹𝑤(𝐿𝑟 + 𝐿𝑤)

(𝐿𝑟 − 𝐿𝑎)
 (23) 

𝐹𝑟 =
𝐹𝑤(𝐿𝑤 + 𝐿𝑎)

(𝐿𝑟 − 𝐿𝑎)
 (24) 

 

The shear diagram shows that the maximum force occurs at the top clamp during 

a front wind loading scenario. The moment diagram shows that the maximum moment 

during a front wind loading scenario occurs at the top clamp. This can be stated 

mathematically with the following equations: 

𝑀𝑎 = 𝐹𝑤(𝐿𝑎 + 𝐿𝑤) (25) 

𝑀𝑎 = 𝐹𝑟(𝐿𝑟 − 𝐿𝑎) (26) 
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4.4.4 Back Wind loading 

Lateral wind blowing onto the back side of the fence structure will place a load 

onto the vertical posts and chain-link mesh, which will then be transferred through the 

posts and into the saddle clamps and anchor connections as a tensile load. In this loading 

scenario, the largest tensile load will be transferred into the bottom clamp and anchor 

connections. In this derivation the tensile force at the top clamp and anchor connections 

were neglected. A diagram showing the back wind loading is shown in Figure 62, a 

definition of the variables is shown in Table 8, and the full mathematical derivation is 

given in Appendix D. 

 
Figure 62 Back Wind Loading Configuration 
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Table 8. Back Wind Loading Variables 

 
 

To simplify this situation the total effective wind load can be transferred to a point 

load at its centroid. A diagram showing this scenario and its corresponding shear and 

moment diagrams are shown in Figure 63. 

 
Figure 63. Simplified Back Wind Loading 

Variable Definition

fw Wind Load Per Unit Length

Fw Total Effective Wind Load

Fb Tensile Force at Bottom Clamp

Fr Reaction Force at Top of Parapet

Hw Chain-Link Height

Lw Distance Between Center of Wind Load and Top of Parapet

Lb Distance Between Bottom Clamp and Top of Parapet
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Note, that the forces and moments obtained through the simplified model are 

equivalent to the actual configuration and only differ in the look of the shear and moment 

diagram. A static force balance and moment sum at points w, r, and b of the back wind 

scenario yields the following equations: 

∑ 𝐹𝑥 = 0 = 𝐹𝑤 + 𝐹𝑏 − 𝐹𝑟 (27) 

∑ 𝑀𝑤 = 0 = −𝐹𝑟𝐿𝑤 + 𝐹𝑏(𝐿𝑏 + 𝐿𝑤) (28) 

∑ 𝑀𝑟 = 0 = −𝐹𝑤𝐿𝑤 + 𝐹𝑏𝐿𝑏 (29) 

∑ 𝑀𝑏 = 0 = −𝐹𝑤(𝐿𝑤 + 𝐿𝑏) + 𝐹𝑟𝐿𝑏 (30) 

Through substitution and solving these equations the forces at r, and b can be 

determined: 

𝐹𝑟 =
𝐹𝑤(𝐿𝑤 + 𝐿𝑏)

𝐿𝑏
 (31) 

𝐹𝑏 =
𝐹𝑤𝐿𝑤

𝐿𝑏
 (32) 

 

The shear diagram shows that the maximum force occurs at the top of the parapet 

during a back wind loading scenario. The moment diagram shows that the maximum 

moment during a back wind loading scenario occurs at the top of the parapet. This can be 

stated mathematically with the following equations: 

𝑀𝑟 = 𝐹𝑤𝐿𝑤 (33) 

𝑀𝑟 = 𝐹𝑏𝐿𝑏 (34) 
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4.4.5 Dead Load 

The weight of the fence components will result in a vertical dead load, which is 

equivalent to the sum of all components within one section of the fence. A diagram 

showing the dead load configuration is shown in Figure 64, a definition of the variables is 

shown in Table 9, and the full mathematical derivation is given in Appendix E. 

 
Figure 64. Dead Load Configuration 
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Table 9. Variable Definitions 

 
 

∑ 𝐹𝑦 = 0 = −𝑊 + 𝐹𝑟 (35) 

 

𝑊 = 𝐹𝑟  

 
(36) 

Additionally, it is recommended that a load factor of 1.2 be used to determine the 

applied dead load for the design [30]. 

𝑊 = 1.2 ∗ 𝐹𝑟 

 
(37) 

4.5 Post Selection Based on Wind Load 

The Chain Link Fence Manufacturers Institute published information regarding 

the selection of line posts and line post spacing in wind and snow prone areas [31]. The 

guidelines are detailed in the Chain Link Fence Wind Load Guide for the Selection of 

Line Post and Line Post Spacing and were derived from ASCE 7-10 standards and 

guidelines [32]. This informational guide can be used to select the correct post spacing 

for chain-link fence structures based off of anticipated wind gusts and icing effects, 

vertical post diameter, chain-link mesh size and diameter, and fence height. Additionally, 

these guidelines were formulated under the following assumptions:  

1. Wind is acting in a direction normal to the face of the fence fabric and applied on 

the fabric side of the line post.  

Variable Definition

W Weight of Dead Load

Fr Reaction Force due to Dead Load
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2. Line posts are considered to be embedded into the ground surface in accordance 

with the minimum size and depth established according to the 2009 International 

Building Code and ASTM F567. 

3. All posts are Schedule 40 Pipe and considered to be embedded in air-entrained 

concrete with a minimum 2,500 psi compressive strength to a depth consistent 

with local soil types and conditions.  

It was assumed that the structural capacity of the clamping mechanisms to the 

backside of the parapet would offer the same strength as the concrete foundation. Under 

these assumptions, the following equation was formulated to determine the maximum 

recommended spacing of vertical posts in a chain-link fence structure.  

𝑆′ = ℎ𝐶1𝐶2𝐶3 (38) 

Where:            𝑆′ = Post Spacing (ft) 

  ℎ = Coefficient Based on Fence Height and Post Diameter  

𝐶1 = Coefficient Based on Mesh and Fabric Size 

𝐶2 = Coefficient Based on Wind Exposure 

𝐶3 = Coefficient Based on Ice Exposure 

Note that the Chain Link Fence Manufactures Institute recommends a post 

spacing equal to 𝑆′ or 10 ft (3.0 m). 

4.5.1 Iowa Wind Spacing and Sizing Requirements 

Current Iowa DOT requirements dictate the following: 

1. Any item placed along the roadway must be able to withstand wind gusts up to 90 

mph (149 kph).  

2. Standards say that the wire height of the structure must be at least 6 ft (1.8 m) tall. 

3.  The mesh gap size must be at least 2 in. (51 mm) and should be composed of #9 

gauge wire.  
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4.5.2 Selection of Parameters and Pipe Sizing 

Using these values in conjunction with the Chain Link Fence Wind Load Guide 

for the Selection of Line Post and Line Post Spacing, the coefficient values were 

determined and are shown below: 

1. A 𝐶1 value of 7.26 was based off of a 2-in. (51-mm) gap size and #9 gauge wire;  

2. A 𝐶2value of 0.55 was obtained for a wind coefficient value, because this design 

will potentially be used in any type of environment; and 

3. A 𝐶3 value of 0.45 was obtained, because it is very likely that the areas in Iowa 

where this fence will be used are likely to experience heavy ice storms.  

The last coefficient, ‘h’, is a function of the fence height post diameter, post 

material, and wind speed. Iowa DOT specifies that the fence should be a minimum of 6 ft 

(1.8m) tall and be designed to withstand 90 mph (145 kph) winds, but the lowest wind 

value given in the guidelines is 105 mph (169 kph). Following the Iowa DOT guidelines 

given in Section 3.8.1 and selecting schedule 40 ASTM F1043 Regular Grade 30 ksi (207 

MPa) yields the h values shown in Table 10. 

Table 10. ‘h’ Values 

 
 

Based on the selection parameters, the post spacing is given by the following 

equation: 

𝑆′ = ℎ(7.26)(0.55)(0.45) (39) 

Outside Diameter (in.) h

1.875 1.2

2.375 2.3

2.875 4.4

3.5 7.3

4 10.2
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Using this information and differing post diameter, multiple post spacings were 

determined and are shown in Table 11. Note that all of the coefficients were selected to 

represent the worst-case environmental conditions [31]. 

Table 11. Calculated Vertical Post Spacing 

 
 

The guidelines recommend that the maximum spacing should be 10 ft (3 m), and 

the data in Table 11 shows that this value is reached between a vertical post’s outside 

diameter of 2⅞ in. (73 mm) and 3½ in. (89 mm). Linear interpolation from this table 

indicates that the post size will be optimized with an outside diameter of 3 in. (76 mm) 

and a post spacing of 10 ft (3 m). However, a 3-in. (76-mm) outside diameter, schedule 

40 pipe is not a standard size. Alternative options, which satisfy the wind loading 

requirements, which include commonly-produced post sizes, such as 3½ in. (89 mm) 

posts spaced at 10 ft (3m) or 2⅞ in. (73 mm) posts spaced at 8 ft (2.4 m).  

When the proposed debris fence experiences a significant impact event, it is 

preferred that the vertical posts plastically deform or fracture to reduce vehicle snag 

concerns. Thus, the flexural and shear capacities of the post should be minimized to the 

lowest acceptable value after satisfying the design criteria. Therefore, 2⅞-in. (73-mm) 

outside diameter schedule 40 pipes spaced at 8 ft (2.4 m) centers were selected for the 

post size and spacing, respectively. 

Outside Diameter (in.) Post Spacing (ft)

1.875 2.16

2.375 4.13

2.875 7.91

3.5 13.12

4 18.33
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4.6 Minimum Design for Wind Loading 

The ASCE published information regarding the typical wind loads that buildings 

and other structures experience based off of expected maximum wind velocities and 

geographical placement of the structure. These guidelines are detailed in ASCE 7-10 

Minimum Design Loads for Buildings and Other Structures [32] and were followed to 

determine maximum wind loading on a fence using a 2-in. (51-mm) mesh spacing and 6 

through 11 gauge wire. The equation for calculating the maximum expected wind loads is 

shown below. Note, ASCE 7-10 introduced wind speed maps that are to be used with a 

load factor equal to 1.0 for Load and Resistance Factor Design (LRFD).  

𝐹 = 𝑞𝑧𝐴𝐶𝐷 (40) 

Where:            F = Maximum Wind load, (N) 

  𝑞𝑍= Maximum Dynamic Pressure, (Pa) 

  A = Projected Area, (m2) 

  𝐶𝐷 = Drag Coefficient 

 

4.6.1 Dynamic Pressure 

The first step was to determine the maximum overall dynamic pressure imparted 

to the fence structure. The equation for this pressure calculation is shown below and is 

given in Section 27.3.2 of the ASCE guidelines. Using this equation and a maximum 

expected wind speed of 115 mph (185 kph), which is shown in the guidelines, and results 

in a conservative design force compared to a 90 mph (145 kph) wind speed given by the 

Iowa DOT. The maximum dynamic pressure experienced by the debris fence structure 

was calculated to be 0.22 psi (1,501 Pa).  

𝑞𝑧 = 0.613𝐾𝑧𝐾𝑍𝑇𝐾𝐷𝑉2 (41) 

Where:            𝑞𝑧 = Maximum Dynamic Pressure, (Pa) 

  𝐾𝑍= Velocity Pressure Exposure Coefficient, 1.09 
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  𝐾𝑍𝑇 = Topographic Factor, 1 

  𝐾𝐷 = Wind Directionality Factor, 0.85 

V = Maximum Expected Wind Velocity, (m/s), 51.4 m/s 

 

4.6.2 Projected Area 

Next, the surface area exposed to the pressure can be determined. Current Iowa 

guidelines state that the chain-link fence should be at least 6 ft (1.8 m) tall, have a 2-in. 

(51-mm) mesh gap size, and the calculations given by the Chain Link Fence 

Manufacturers depict a maximum post spacing of 8 ft (2.4 m). The exposed areas 

subjected to the wind over each 2-in. (51-mm) gap mesh size for a 6 ft x 8 ft (1.8 m x 2.4 

m) section of the fence for 6 through 11 gauge wires are shown in Table 12. The 

mathematical details for this calculation are given in Appendix F. 

Table 12. Chain-Link Area Exposed to Wind 

 
 

4.6.3 Drag Coefficient 

The drag coefficient seen in Equation (40) is a function of fluid density, viscosity, 

speed, as well as object geometry. These values along with experimentally-determined 

results can be used to determine the drag coefficient. 

The Reynolds Number is used to estimate the drag coefficient and can be 

calculated using Equation (42). The density and dynamic viscosity of air at 80 F (26.7 C) 

were used, and the characteristic length scale was the diameter of the chain-link mesh. 

2 in. Mesh (ft2) 2 in. Mesh (m2)

6 gauge 14.39 1.34

7 gauge 12.92 1.20

8 gauge 11.59 1.08

9 gauge 10.39 0.97

10 gauge 9.31 0.86

11 gauge 8.33 0.77

Chain Link Area Exposed to Wind
Wire Gauge
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These calculated Reynolds Numbers can then be used in conjunction with the graph 

shown in Figure 65 to determine the drag coefficient. It is difficult to obtain accurate drag 

coefficients when using a logarithmic plot, but tabulated values are not readily accessible. 

Table 13 shows the calculated Reynolds numbers and drag coefficients for 6 through 11 

gauge chain-link fabric.  

𝑅𝑒 =
𝜌𝑉𝐿

𝜇
  (42) 

Where:            𝑅𝑒 = Reynolds Number 

  𝜌 = Fluid Density (kg/m3) 

  𝑉 = Fluid Velocity (m/s) 

  L = Characteristic Length Scale (m) 

  𝜇 = Dynamic Viscosity (Pa-s) 

 

 
Figure 65. Drag Coefficient vs Reynolds Number for Cylinders [33] 
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Table 13. Calculated Reynolds Numbers and Drag Coefficients 

 
 

4.6.4 Maximum Wind Loading 

After the dynamic pressure change, projected area, and drag coefficients were 

determined, the maximum wind loading was calculated using Equation (40). These 

results are shown in Table 14. Generally, it would be expected that the drag forces would 

increase as the projected area increased. Thus, the larger gauge wire should experience 

larger drag forces, but the results displayed below do not agree with this assumption. All 

of the calculated Reynolds Numbers fall between 290,000 and 540,000, and these values 

are actually located in a transition zone that experiences a rapid decrease in the measured 

drag coefficient. This reduction in the drag coefficient leads to very similar drag values as 

the diameter of the wire is increased from 11 to 6 gauge.  

Table 14. Maximum Expected Wind Loads 

 
 

2 in. Mesh (lbf) 2 in. Mesh (N)

6 gauge 271 1,204

7 gauge 284 1,261

8 gauge 291 1,293

9 gauge 293 1,304

10 gauge 292 1,298

11 gauge 287 1,278

Wind Loads
Wire Gauge

Wire Gauge 2 in. Mesh (lbf) 2 in. Mesh (N)

6 gauge 271 1,204

7 gauge 284 1,261

8 gauge 291 1,293

9 gauge 293 1,304

10 gauge 292 1,298

11 gauge 287 1,278

Wind Loads
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Following the Iowa DOT guidelines, 9-gauge wire was used in the design of this 

debris fence system. This results in a maximum force of 293 lbf (1,304 N). This 

maximum force was used to confirm the structural integrity of the fence design subjected 

to wind loading.  

4.7 Design of Members for Flexure 

Chapter F of the AISC Steel Construction Manual [34] was consulted to determine 

the maximum allowable flexural capacity to design vertical posts that will yield during an 

impact. Sections F1, General Provisions, and F8, Round HSS, are of particular interest in 

the design of a parapet-mounted debris containment fence. Iowa currently uses circular 

pipes in the protection fence shown in Figure 11. To limit the cost and use of nonstandard 

members, round pipe was selected for the proposed debris fence.  

To determine the nominal plastic flexural strength, Equation (43) was utilized.  

𝜙𝑏𝑀𝑛 =  𝜙𝑏𝐹𝑦𝑍 (𝐴𝐼𝑆𝐶 𝐹8 − 1) (43) 

Where:            𝜙𝑏Mn = Design Flexural Strength (kip-in.) 

Fy  = Specified Minimum Yield Stress (ksi) 

Z = Plastic section modulus (in.3) 

𝜙𝑏 = 0.9, Resistance Factor for Flexure 

 

Section F7 of the AISC Steel Construction Manual lists the steps to determine the 

plastic nominal flexural strength of a steel member. Following the Iowa DOT guidelines, 

shown in Section 3.8.1, ASTM F1083 regular grade schedule 40 piping, containing a 

specified yield stress of 30 ksi (207 MPa), was selected as the vertical posts used in the 

debris fence [35]. Plastic section modulus values were obtained from Part 1 of the Steel 

Manual. Next, Equation (43) was used to calculate the nominal plastic flexural strength 
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for schedule 40 pipes containing outside pipe diameters ranging from 1.66 in. (42 mm) to 

3½ in. (89 mm). These values are shown below in Table 15. 

Table 15. Nominal Plastic Flexural Strength  

 
 

To minimize bending strength and maximize efficiency of the design by, a 2½-in. 

(64-mm) schedule 40 NPS pipe with a nominal flexural strength of 36.99 kip-in (4.18 

kN-m) was recommended. 

4.8 Design of Members for Shear 

Chapter G of the AISC Steel Construction Manual [34] was consulted to 

determine the maximum shear capacity of the vertical posts. As with the plastic bending 

stress, the vertical posts were assumed to be circular pipe sections, and the shear strength 

of the posts was calculated to determine if impact loads were likely to cause posts to 

shear off. To determine the shear capacity, Equation (44) can be utilized.  

𝜙𝑣𝑉𝑛 =
𝜙𝑏𝐹𝑦𝐴𝑔

2
  (𝐴𝐼𝑆𝐶 𝐺5 − 1) (44) 

Where:            Vn = Design Shear Strength (kips) 

  Fy = Specified Minimum Yield Stress (ksi) 

Ag  = Gross Cross-Sectional Area (in.2) 

𝜙𝑣 = 0.9, Resistance Factor for Shear 

 

Using the post sizing guidelines obtained from the wind spacing and sizing 

requirements, a gross cross-sectional area value of 1.59 in2, as shown in Part I of the Steel 

Size NPS Pipe OD (in.)
Plastic Section 

Modulus (in.
3
)

Nominal Plastic Flexural 

Strength (kip-in.)

1.25 1.66 0.305 8.24

1.5 1.9 0.421 11.37

2 2.375 0.713 19.25

2.5 2.875 1.37 36.99

3 3.5 2.19 59.13
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Manual, and ASTM F1083 regular grade schedule 40 piping with a specified minimum 

yield stress of 30 ksi (345 MPa), the design shear strength of the 2½-in. (64-mm) NPS 

pipe was calculated as 21.47 kips (95.5kN). 

4.9 Verification of Design for Wind Loading 

In order to determine that the flexure and shear values experienced by the pipe 

during maximum wind loading scenarios are below the calculated flexural and shear 

capacity of the pipe, the following assumptions were made: 

1. The maximum wind load is 293 lbf (1,304 N), as shown in Section 4.6.4; 

2. The top clamp will be located 8 in. (203 mm) below the top of the parapet; 

3. The bottom clamp will be located 14 in. (356 mm) below the top of the 

parapet and; 

4. The chain-link mesh height will be 6 ft (1.8 m), as shown in Section 3.8.1, 

and the wind load will act as a point load 36 in. (914 mm) above the 

parapet. 

4.9.1 Front Wind Loading  

Using the simplified model of the front wind loading scenario shown in Figure 66 

and Equations (45) through (47), the flexural and shear capacity of the pipe can be 

compared against obtained values due to wind loading. These results are shown in Table 

16. 
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Figure 66. Front Wind Loading Simplified Configuration 

𝐹𝑎 =
𝐹𝑤(𝐿𝑟 + 𝐿𝑤)

(𝐿𝑟 − 𝐿𝑎)
 (45) 

𝐹𝑟 =
𝐹𝑤(𝐿𝑤 + 𝐿𝑎)

(𝐿𝑟 − 𝐿𝑎)
 (46) 

𝑀𝑎 = 𝐹𝑤(𝐿𝑎 + 𝐿𝑤) (47) 

 

Table 16. Front Wind Loading Results 

 
 

The maximum flexural value of 12.89 kip-in. (1.46 kN-m), in a front wind 

loading scenario, occurs at the top bracket and is lower than the maximum flexural 

capacity of the pipe, given in Section 4.7 as 36.99 kip-in (4.18 kN-m). 

Fw (kips) Fa (kips) Fr (kips) Ma (kip-in.)

0.293 2.44 2.15 12.89
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The maximum shear value of 2.44 kips (10.9 kN), in a front wind loading 

scenario occurs at the top bracket and is lower than the maximum shear capacity of the 

pipe, given in Section 4.8 as 21.47 kips (95.5kN).  

Thus, it is expected that the fence will not yield during frontal wind loading 

scenarios.  

4.9.2 Back Wind Loading 

Using the simplified model of the back wind loading scenario shown in Figure 67 

and Equations (48) through (50) the flexural and shear capacity of the pipe can be 

compared against obtained values due to wind loading. These results are shown in Table 

17. 

 
Figure 67. Back Wind Loading Simplified Configuration 
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𝐹𝑟 =
𝐹𝑤(𝐿𝑤 + 𝐿𝑏)

𝐿𝑏
 (48) 

𝐹𝑏 =
𝐹𝑤𝐿𝑤

𝐿𝑏
 (49) 

𝑀𝑟 = 𝐹𝑤𝐿𝑤 (50) 

Table 17. Back Wind Loading Results 

 
 

The maximum flexural value of 10.55 kip-in. (1.19 kN-m), in a back wind loading 

scenario, occurs at the top of the parapet and is lower than the maximum flexural capacity 

of the pipe, given in Section 4.7 as 36.99 kip-in (4.18 kN-m). 

The maximum shear value of 1.05 kips (10.9 kN), in a back wind loading 

scenario, occurs at the top of the parapet and is lower than the maximum shear capacity 

of the pipe, given in Section 4.8 as 21.47 kips (95.5kN). 

Thus, it is expected that the fence will not yield during back wind loading 

scenarios. 

4.10 Estimation of Impact Force to Yield Posts 

As stated previously it is preferred that the posts within this debris fence yield 

backwards during an impact to limit the potential snag between the fence and impacting 

vehicle. Note that the impact force will be the same for both the lateral and longitudinal 

loading scenarios. Thus, only the lateral impact scenario was analyzed, this loading 

configuration is shown in Figure 68. The force at point i, a, and r can be estimated using 

Equations (51) through (53) and the following assumptions: 

Fw (kips) Fr (kips) Fb (kips) Mr (kip-in.)

0.293 1.05 0.753 10.55
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1. The maximum moment in the system will be located at the top clamp and 

is equal to the flexural capacity of the pipe;  

2. The top clamp will be located 8 in. (203 mm) below the top of the parapet; 

3. The bottom clamp will be located 14 in. below the top of the parapet and; 

4. The impact will occur 3 in. (76 mm) above the top of the parapet. 

 
Figure 68. Lateral Impact Loading Configuration  

𝑀𝑎 = 𝐹𝑖(𝐿𝑎 + 𝐿𝑖) (51) 

𝐹𝑟 =
𝐹𝑖(𝐿𝑖 + 𝐿𝑎)

(𝐿𝑟 − 𝐿𝑎)
 (52) 

𝐹𝑎 =
𝐹𝑟(𝐿𝑖 + 𝐿𝑟)

(𝐿𝑖 + 𝐿𝑎)
 (53) 
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Table 18. Resulting Forces 

 
 

An impact force of 3.36 kips (15.0 kN) is needed to yield the post backwards 

during an impact, as shown in Table 18.

Fi (kips) Fa (kips) Fr (kips)

3.36 9.53 6.17
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5 ADDITIONAL PRELIMINARY DEBRIS FENCE COMPONENT DESIGNS 

5.1 Overview 

The following information are current best estimates for components that will be 

revisited and revised in future studies. These design and selections are potential options 

that may be selected at a future date.  

5.2 Longitudinal Stiffeners 

As shown in the literature review of this report, states commonly use small 

diameter pipes or tension wires as longitudinal members in their parapet mounted debris 

fences. These members help to maintain the chain-link in high wind situations and can be 

connected using wire ties to lessen sagging of the chain-link between vertical posts. 

MwRSF researchers believed that using tension wires may result in less vehicle damage 

during an impact. The critical failure points of these tubes within the ZOI are at 

connection points between the tubes, where rail ends could disengage and spear an 

impacting vehicle. Therefore, tension wires are preferred for stiffening the lower portion 

of the fence.  

The fence design currently used by Florida, as shown in Figures 6 through 8, only 

uses tension wires which most likely are used to eliminate vehicle snag on longitudinal 

posts and mesh within the ZOI. However, using tension wires without a fence frame 

could reduce the aesthetics of the system. High wind loading environments may cause the 

fence to sway, and tolerances in the fence construction may cause the top of the fence to 

wander or appear irregular, which decreases the overall aesthetic quality. A frame on the 

top of the fence may fix or hide fence irregularities and provide a “clean” appearance for 

the system, without compromising safety. Therefore, Iowa DOT decided to pursue a 
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fence design incorporating a top structural member to frame the fence, and two 

intermediate tension wires, similar to the Texas design, as shown in Figure 27. 

The use of tension wires offers an added benefit of limiting fence debris from 

falling onto the tracks below during an impact event. It is imperative that large pieces of 

the structure do not break off and fall onto the track during a vehicular impact. Another 

method for limiting this debris may be to use the idea presented in Section 3.3. To retain 

any debris on the bridge after an impact, an additional wire could be installed in the upper 

frame. 

The upper frame can be designed in multiple ways, but it is very important that 

installers have access to the tension wire in case it needs replaced. A potential option is 

shown below in Figures 69 and 70. This design consists of two main components. The 

first is a circular section of pipe with a piece of angle iron welded to the top. This pipe 

would be placed directly into the vertical posts after their instillation and will be secured 

with one bolt. The second piece is the longitudinal member, which would be placed on 

top of the angle iron and secured with two bolts. This longitudinal member would allow 

both the top of the chain link fence and a tension cable to be placed within. These would 

then be secured along the member with bolts. 
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Figure 69. Potential Top Rail Isometric Back View 

 
Figure 70. Potential Top Rail Side View 
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Note, this is not the proposed design to be used within the parapet fence but one 

potential option.  

5.3 Clamp Spacing and Design 

To limit vertical sagging of the fence a bolt can be placed horizontally through the 

saddle clamp and will need to be able to withstand anticipated dead loads. This is similar 

to what Florida currently uses, as shown in Figure 8. One such potential design is shown 

in Figure 71. 

  
Figure 71. Potential Saddle Clamp Design 

Note, this is not the proposed design to be used within the parapet fence but one 

potential option. 



126 

 

Part I 

6 SUMMARY CONCLUSIONS AND RECOMMENDATIONS  

Part I of this thesis detailed the results of a literature review and the initial design 

and analysis of vertical posts used with a debris fence system. Five different loading 

scenarios were investigated. Using these loading scenarios, and Iowa DOT criteria post 

sizing and spacing requirements were determined to be able to withstand expected wind 

loads. 

The literature review, conducted for the Iowa DOT, resulted in obtaining state 

debris fence designs, previous real word crashes, crash tests related to debris fences, ZOI 

information, debris fence examples in Lincoln, Nebraska, and Iowa DOT design 

standards.  

Due to safety and constructability concerns the Iowa DOT asked that the proposed 

design include vertical posts mounted to the back of the bridge rail. This allows 

additional offset from the barrier and reduces the chance that an impacting vehicle will 

come into contact with the debris fence. Saddle clamps were chosen as the method of 

attachment to the back of the parapet because they are commonly used by state DOTs and 

because of a successful crash test, under AASHTO PL-2 conditions, of a similar system 

by TTI.  

Five different loading scenarios were investigated in this analysis and are as 

follows: 

1. A lateral load during a vehicular impact; 

2. A longitudinal load during a vehicular impact; 

3. A wind load on the front of the fence; 



127 

 

4. A wind load on the back of the fence and; 

5. A dead load from the weight of the fence material, which will always be 

present. 

Post sizing, spacing, and material requirements were selected to allow the vertical 

posts and fence structure to be maintained during high wind loading events but yield out 

of the way during vehicular impacts to decrease the likelihood of snagging between the 

structure and impacting vehicle. 

Typically, states use horizontal tubes within their debris fence designs to allow 

longitudinal stiffness of the system and to limit the amount of sway during high wind 

events, but there is a chance that impacting vehicles could cause these longitudinal 

members to break apart at connection points and spear the vehicle. In an effort to prevent 

this sort of vehicle and system interaction the Iowa DOT requested that tension cables be 

used within the design and the horizontal frame be limited to the top of the system. It is 

expected that under MASH TL-3 conditions there will be little to no interaction between 

the vehicle and the top of the debris fence.  

It is recommended that additional work be complete in order to determine the 

correct design of the horizontal rail, saddle clamps, and anchorage connections that will 

be used in the design.
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PART II 

7 INTRODUCTION – POST SOIL INTERACTION FORCES 

7.1 Background 

This Part II effort details the results and analysis of bogie tests. These tests were 

conducted using steel tubes with varying cross-section geometries, embedment depths, 

and two different soil types. These tests were conducted to evaluate the effectiveness of 

the modified Midwest Guardrail System (MGS) in both strong and weak soils. Therefore, 

both types of soil were utilized in the bogie testing program. The strong soil met 

AASHTO standard soil designation M147 Grade B requirements. The weak soil met 

AASHTO standard soil designation A3. Post-soil interaction forces and energy-

dissipation characteristics were compared for all tests. From these comparisons, the 96-in. 

embedment depth was found to provide adequate impact properties in both strong and 

weak soils.  

This section of this thesis will summarize the results and analysis of a total of 

seventeen dynamic bogie tests of a square, thin-walled tube impacted in both weak and 

strong soils. During this testing series, post width and post embedment depth were 

evaluated to determine the importance of these variables on the overall post-soil 

interaction forces. A total of 23 tests were originally planned. However after the post 

yielding occurred the actual test matrix was modified. Post yielding, instead of post 

displacement within the soil, was observed for both strong and weak soil tests.  

7.2 Research Objectives 

The first objective was to determine how changes in post width, post embedment 

depth, and soil type effect overall post-soil interaction forces. The second objective was 
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to display this data in a meaningful and impactful way that would be beneficial in both 

analytical and computational studies.  

7.3 Scope 

Nineteen bogie tests were conducted on different post geometries with various 

embedment depths in both weak and strong soil types. During two of these tests, the posts 

yielded; thus, only the data from seventeen of the tests was analyzed in detail. The target 

impact speed for all tests was 25 mph (40.2 kph). The posts were impacted 25 in. (635 

mm) above the ground line perpendicular to the front face of the post, which created a 

classical “head-on” or full frontal impact with strong-axis bending. The bogie testing 

matrix is shown in Figure 72. Material specifications, mill certifications, and certificates 

of conformity for the posts are shown in Appendix G. 

Two different types of soil were utilized in the tests. The first soil, a compacted 

sand that met AASHTO standard soil designation A-3, was utilized for test nos. P3G-1 

through P3G-6, P3G-13 through P3G-15, and P3G-22, through P3G-23. Sand was 

utilized in the tests to represent the least desirable soil conditions that could be 

encountered in the installation of an upgraded Midwest Guardrail System (MGS). The 

second type of soil utilized in the remaining tests was a compacted, coarse, crushed 

limestone material that met AASHTO standard soil designation M147 Grade B, which is 

consistent with the strong soil required for compliance testing according to MASH 2016 

[1]. Soil specifications are shown in Appendix G.
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Table 19. Test Matrix  

est No. Post Type 

Bogie 

Approximate 

Weight 

lb 

Bogie 

Target 

Speed 

mph 

Post 

Embedment 

Depth 

in. 

Post Height 

Visible Above-

Ground line  

in. 

Soil Type 

P3G-1 8”x6”x3/16” 1,876 25 48 36 Weak 

P3G-2 8”x6”x3/16” 1,876 25 48 36 Weak 

P3G-3 8”x6”x3/16” 1,876 25 72 36 Weak 

P3G-4 8”x8”x3/16” 1,876 25 72 36 Weak 

P3G-5 8”x6”x3/16” 1,876 25 96 36 Weak 

P3G-6 8”x8”x3/16” 1,876 25 96 36 Weak 

P3G-7 8”x6”x3/16” 1,876 25 48 36 Strong 

P3G-8 8”x8”x3/16” 1,876 25 48 36 Strong 

P3G-9 8”x6”x3/16” 5,212 25 72 36 Strong 

P3G-10*  1,876 25 72 36 Strong 

P3G-11*  1,876 25 96 36 Strong 

P3G-12*  1,876 25 96 36 Strong 

P3G-13 8”x4”x3/16” 1,876 25 78 32 Weak 

P3G-14 8”x4”x3/16” 1,876 25 90 32 Weak 

P3G-15 8”x4”x3/16” 1,876 25 102 32 Strong 

P3G-16 8”x4”x3/16” 1,876 25 40 32 Strong 

P3G-17 8”x8”x3/8” 5,212 25 48 36 Strong 

P3G-18 8”x6”x3/8” 5,212 25 72 36 Strong 

P3G-19 8”x8”x3/8” 5,005 25 72 36 Strong 

P3G-20 8”x6”x3/8” 5,005 25 96 36 Strong 

P3G-21*  5,005 25 96 36 Strong 

P3G-22 8”x4”x3/8” 1,876 25 90 32 Weak 

P3G-23 8”x4”x3/8” 1,876 30 102 32 Weak 

* designates test was not run 
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Figure 72. Test Matrix, Test Nos. P3G-1 through P3G-23 
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Figure 73. Test and Bogie Layout
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Figure 74. Post a1-a3 Details, Test Nos. P3G-1 through P3G-23 
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Figure 75. Post a4-a6 Details, Test Nos. P3G-1 through P3G-23 
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Figure 76. Post a7-a10 Details, Test Nos. P3G-1 through P3G-23 



136 

 

 
Figure 77. Post b1-b3 Details, Test Nos. P3G-1 through P3G-23 
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Figure 78. Post b4-b7 Details, Test Nos. P3G-1 through P3G-23
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7.4 Equipment and Instrumentation 

During the dynamic bogie tests, several types of equipment and instrumentation 

were utilized to collect and record data, including a bogie vehicle, accelerometers, a 

retroreflective speed trap, high-speed and standard-speed digital video, and still cameras. 

7.4.1 Bogie Vehicles 

Two rigid-frame bogies were used to impact the posts. A variable-height, 

detachable impact head was used in all tests. The bogie head was constructed of 8-in. 

(203-mm) diameter, ½-in. (13-mm) thick standard steel pipe, with ¾-in. (19-mm) 

neoprene belting wrapped around the pipe to prevent local damage to the post during the 

impact event. The impact head was bolted to the bogie vehicle, creating a rigid frame 

with an impact height of 25 in. (635 mm). Bogie no. 3, which was used with the impact 

head in test nos. P3G-1 through P3G-8 and P3G-13 through P3G-16, is shown in Figure 

79. Bogie no. 2, which was used with the impact head in test nos. P3G-9 and P3G-17 

through P3G-23, is shown in Figure 80. For the first three tests utilizing bogie no. 2, test 

nos. P3G-9, P3G-17, and P3G-18, the test weight of the bogie with the accelerometers 

and mountable impact head was 5,212 lb (2364 kg). The weight of the bogie no. 3 with 

the addition of the mountable impact head and accelerometers was 1,876 lb (851 kg). 

During test no. P3G-18, bogie no. 2 sustained damage to the impact head. Thus, for test 

nos. P3G-21 through P3G-23, a different impact head was substituted, and the weight of 

the bogie, accelerometers, and new impact head was 5,005 lb (2,270 kg).  
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Figure 79. Rigid-Frame Bogie No. 3 and Guidance Track 

 
Figure 80. Rigid-Frame Bogie No. 2 and Guidance Track 

7.4.2 Test Vehicle 

A pickup truck with a reverse-cable, tow system was used to propel the bogie to 

the respective target impact speed for each test. When the bogie approached the end of 

the guidance system, it was released from the tow cable, allowing it to be free rolling 
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when it impacted the post. A remote-controlled braking system was installed on the 

bogie, thus allowing it to be brought safely to rest after the test. 

7.4.3 Accelerometers 

Two accelerometer systems were mounted on the bogie vehicle near its center of 

gravity (c.g.) to measure the acceleration in the longitudinal, lateral, and vertical 

directions. However, only the longitudinal acceleration data was processed and reported 

herein.  

The two systems, the SLICE-1 and SLICE-2 units, were modular data acquisition 

systems manufactured by Diversified Technical Systems (DTS) of Seal Beach, 

California. The acceleration sensors were mounted inside the bodies of custom-built 

SLICE 6DX event data recorders and recorded data at 10,000 Hz to the onboard 

microprocessor. Each SLICE 6DX was configured with 7 GB of non-volatile flash 

memory, a range of ±500 g’s, a sample rate of 10,000 Hz, and a 1,650 Hz (CFC 1000) 

anti-aliasing filter. The “SLICEWare” computer software program and a customized 

Microsoft Excel worksheet were used to analyze and plot the accelerometer data. 

7.4.4 Retroreflective Optic Speed Trap 

The retroreflective optic speed trap was used to determine the speed of the bogie 

vehicle before impact. Three retroreflective targets, spaced at approximately 18-in. 

intervals, were applied to the side of the vehicle. When the emitted beam of light was 

reflected by the targets and returned to the Emitter/Receiver, a signal was sent to the data 

acquisition computer, recording at 10,000 Hz, as well as the external LED box activating 

the LED flashes. The speed was then calculated using the spacing between the 

retroreflective targets and the time between the signals. LED lights and high-speed digital 
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video analysis are only used as a backup in the event that vehicle speeds cannot be 

determined from the electronic data. 

7.4.5 Digital Photography 

One AOS high-speed digital video camera and two GoPro digital video cameras 

were used to document all tests. The AOS high-speed camera had a frame rate of 500 

frames per second and both GoPro video cameras had a frame rate of 240 frames per 

second. The cameras were placed laterally from the post, with a view perpendicular to the 

bogie’s direction of travel. A Nikon D5300 digital still camera was also used to document 

pre- and post-test conditions for all tests. 

7.5 End of Test Determination 

When the impact head initially contacts the test article, the force exerted by the 

surrogate test vehicle is approximately parallel to the bogie’s direction of travel. 

However, as the post rotates, the surrogate test vehicle’s orientation changes with respect 

to the impact face of the post. This introduces two sources of error: (1) the contact force 

between the impact head and the post has a vertical component and (2) the impact head 

slides upward along the test article. Therefore, only the initial portion of the 

accelerometer trace should be used since variations in the data become significant as the 

system rotates and the surrogate test vehicle overrides the system. Additionally, 

guidelines were established to define the end of test time using the high-speed video of 

the impact. The first occurrence of the surrogate vehicle overriding/losing contact with 

the test article was used to determine the end of the test. 
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7.6 Data Processing 

The electronic accelerometer data obtained in dynamic testing was filtered using 

the SAE Class 60 Butterworth filter conforming to the SAE J211/1 specifications [37]. 

The pertinent acceleration signal was extracted from the bulk of the data signals. The 

processed acceleration data was then multiplied by the mass of the bogie to get the 

impact force using Newton’s Second Law. Next, the acceleration trace was integrated to 

find the change in velocity versus time. Initial velocity of the bogie, calculated from the 

pressure tape switch data, was then used to determine the bogie velocity, and the 

calculated velocity trace was integrated to find the bogie’s displacement. This 

displacement is also the displacement of the post. Combining the previous results, a force 

vs. deflection curve was plotted for each test. Finally, integration of the force vs. 

deflection curve provided the energy vs. deflection curve for each test. 
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8 EFFECT OF PARAMETER VARIATION ON POST-SOIL FORCES 

8.1 Introduction and Motivation 

Researchers compiled the results of the bogie testing and conducted a parametric 

study to determine what trends, if any, could be identified based on the dynamic 

component testing. Some of the parameters which were investigated included post width, 

post embedment depth, and soil strength.  

Univariate analysis was conducted based on similarities from test execution. For 

example, during the post width comparison, data from tests with posts containing 

different widths were compared at the same embedment depth and soil strength. Results 

were plotted graphically and trends were identified, although additional research is 

necessary to confirm the trend at extrapolated conditions. 

8.2 Post Width  

During this testing series, an attempt was made to quantify the effect that post 

width has on the post-soil interaction forces by comparing the results of dynamic post 

tests with different widths installed in similar soils and embedment depths. Posts with 

widths of 6 in (152 mm) and 8 in. (203 mm) were tested at an embedment depths of 48 

in. (1219 mm) and 72 in. (1829 mm) in strong and weak soils. These two post widths 

were additionally tested at a 96-in (2,438 mm) embedment in weak soil. All tests that 

experienced a post yield were neglected from this analysis in order to isolate the post-soil 

response.  

8.2.1 48-in. Embedment in Weak Soil 

Tests P3G-1 (HSS 6-in. x 8-in. x 84-in. x 3/16-in.) and P3G-2 (HSS 8-in. x 8-in. x 

84-in. x 3/16-in.) were conducted at an embedment depth of 48 in. (1,219 mm) in weak 
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soil. Graphs of force vs. displacement and energy vs. displacement can be seen in Figures 

81 and 82 The average force values for both widths at 5, 10, 15, and 20 in. (127, 254, 

381, and 508 mm) of displacement are shown numerically in Table 20.  

Table 20. P3G-1 and P3G-2 Average Force Comparison– 48-in. Embedment in Weak 

Soil 

 
@ 5 in. 

@ 10 

in. 

@ 15 

in. 

@ 20 

in. 

P3G-1 Average Force (kip) 

6 in. x 8 in. x 84 in. long by 3/16 in. thick tube 
12.80 7.96 6.43 5.66 

P3G-2 Average Force (kip) 

8 in. x 8 in. x 84 in. long by 3/16 in. thick tube 
13.62 8.72 6.89 6.05 

Percent Difference 6.4% 9.6% 7.3% 6.8% 
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Figure 81. Force vs. Displacement for P3G-1 and P3G-2  

 
Figure 82. Energy vs. Displacement for P3G-1 and P3G-2 
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8.2.2 72-in. Embedment in Weak Soil 

Tests P3G-3 (HSS 6-in. x 8-in. x 108-in. x 3/16-in.) and P3G-4 (HSS 8-in. x 8-in. 

x 108-in. x 3/16-in.) were conducted at an embedment depth of 72 in. (1,829 mm) in 

weak soil. Graphs of force vs. displacement and energy vs. displacement can be seen in 

Figures 83 and 84. Average force values for both widths at 5, 10, 15, and 20 in. (127, 

254, 381, and 508 mm) of displacement are shown numerically in Table 21.  

Table 21. P3G-3 and P3G-4 Average Force Comparison – 72-in. Embedment in Weak 

Soil 

 @ 5 in. @ 10 in. @ 15 in. @ 20 in. 

P3G-3 Average Force (kip) 

6 in. x 8 in. x 108 in. long by 3/16 in. thick tube 
17.92 11.59 10.09 9.66 

P3G-4 Average Force (kip) 

8 in. x 8 in. x 108 in. long by 3/16 in. thick tube 
20.45 13.90 12.57 11.99 

Percent Difference 14.1% 19.9% 24.6% 24.1% 
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Figure 83. Force vs. Displacement for P3G-3 and P3G-4 

 
Figure 84. Energy vs. Displacement for P3G-3 and P3G-4   
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8.2.3 96-in. Embedment in Weak Soil  

Tests P3G-5 (6-in. x 8-in. x 132-in. x 3/16-in.) and P3G-6 (8-in. x 8-in. x 132-in. 

x 3/16-in.) were conducted at an embedment depth of 96 in. (2,438 mm) in weak soil. 

Graphs of force vs displacement and energy vs. displacement can be seen in Figures 85 

and 86. Average force values for both widths at 5, 10, 15, and 20 in. (127, 254, 381, and 

508 mm) of displacement are shown numerically in Table 22. 

Table 22. P3G-5 and P3G-6 Average Force Comparison – 96-in. Embedment in Weak 

Soil 

 
@ 5 in. 

@ 10 

in. 

@ 15 

in. 

@ 20 

in. 

P3G-5 Average Force (kip) 

6 in. x 8 in. x 132 in. long by 3/16 in. thick tube 
20.04 18.68 17.74 17.38 

P3G-6 Average Force (kip) 

6 in. x 8 in. x 132 in. long by 3/16 in. thick tube 
20.13 19.54 18.94 18.76 

Percent Difference 0.4% 4.6% 6.7% 8.0% 
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Figure 85. Force vs. Displacement for P3G-5 and P3G-6  

 
Figure 86. Energy vs. Displacement for P3G-5 and P3G-6  
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8.2.4 48-in. Embedment in Strong Soil  

Tests P3G-7 (HSS 6-in. x 8-in. x 84-in. x 3/16-in.) and the average between P3G-

8 (HSS 8-in. x 8-in. x 84-in. x 3/16-in.) and P3G-17 (HSS 8-in. x 8-in. x 84-in. x 3/8-in.) 

were conducted at an embedment depth of 48 in. (1,219 mm) in strong soil. P3G-8 and 

P3G-17 were averaged together because the only difference between the two tests was 

the post thickness and both tests behaved similarly to each other except for a small 

inertial spike at the beginning of the test. Graphs of force vs. displacement and energy vs. 

displacement can be seen in Figures 87 and 88. Average force values for both widths at 5, 

10, 15, and 20 in. (127, 254, 381, and 508 mm) of displacement are shown numerically in 

Table 23.  

Table 23. P3G-7 and the average of P3G-8 and P3G-17 Average Force Comparison – 48-

in. Embedment in Strong Soil 

 @ 5 in. @ 10 in. @ 15 in. @ 20 in. 

P3G-7 Average Force (kip) 

6 in. x 8 in. x 84 in. long by 3/16 in. thick tube 
15.03 14.75 14.13 13.14 

P3G-8 & P3G-17 Composite Average Force (kip) 

8 in. x 8 in. x 84 in. long by 3/16 in. and 3/8 in.  thick tube 
22.06 21.68 20.27 18.72 

Percent Difference 46.7% 47.0% 43.5% 42.4% 
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Figure 87. Force vs. Displacement for P3G-7 and the average of P3G-8 and P3G-17 

 
Figure 88. Energy vs. Displacement for P3G-and the average of P3G-8 and P3G-17 
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8.2.5 72-in. Embedment in Strong Soil  

P3G-18 (HSS 6-in. x 8-in. x 108-in. x 3/8-in.) and P3G-19 (HSS 8-in. x 8-in. x 

108-in. x 3/8-in.) were conducted at an embedment depth of 72 in. (1,829 mm) in strong 

soil.  Graphs of force vs. displacement and energy vs. displacement can be seen in 

Figures 89 and 90. Average force values for both widths at 5, 10, 15, and 20 in. (127, 

254, 381, and 508 mm) of displacement are shown numerically in Table 24. 

Table 24. P3G-18 and P3G-19 Average Force Comparison – 72-in. Embedment in Strong 

Soil 

 @ 5 in. @ 10 in. @ 15 in. @ 20 in. 

P3G-18 Average Force (kip) 

6 in. x 8 in. x 108 in. long by 3/8 in. thick tube 
29.89 26.75 28.38 28.85 

P3G-19 Average Force (kip) 

8 in. x 8 in. x 108 in. long by 3/8 in.  thick tube 
33.20 30.29 31.73 32.05 

Percent Difference 11.1% 13.3% 11.8% 11.1% 
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Figure 89. Force vs. Displacement for P3G-18 and P3G-19 

 
Figure 90. Energy vs. Displacement for P3G-18 and P3G-19  
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8.2.6 Post Width Discussion 

If the average force at 15 in. (381 mm) of displacement for all of the tests in weak 

soil are compared, it can be seen that the 8-in. wide posts at embedment depths of 48 and 

96 in. (1,219 and 2,438 mm) experienced forces 7.2 and 6.7 percent greater than a post 

with a 6 in. (152 mm) width. These values are very similar, but the increase in post-soil 

forces were more dramatic at an embedment depth of 72 in. (1,829 mm). At this 

intermediate depth, the 8-in. (203-mm) post width experienced an average force 24.6 

percent higher than seen with a 6-in. (152-mm) post width at 15 in. (381 mm) of 

deflection. Since these results do not provide a consistent trend, a clear determination as 

to how post width at different embedment depths effects the overall post-soil interaction 

in weak soil was not possible. Even though it was not possible to glean clear and 

consistent results from this data series, it does suggest that post width at lower and higher 

embedment depths has little effect on the post-soil interaction forces. Further, post 

embedment depth was a strong indicator of these forces. At intermediate depths, it 

appears that post width plays a meaningful role in the force data. In this testing series, 

only posts with 6-in. (152-mm) and 8-in (203-mm) widths were tested, which limited the 

ability to further define the variation in post-soil interaction forces as the post width 

varied in weak soil.  

The tests completed in strong soil showed inconsistent results when comparing 

their average force values at 15 in. (381 mm) of displacement. At an embedment depth of 

48 in. (1,245 mm), the 8 in. (203 mm) wide posts experienced an average force 43.5 

percent larger than the corresponding test with a width of 6 in. (152 mm). At a 72-in. 

(1,829-mm) embedment, the 8-in. (203-mm) wide posts experienced an average force 
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11.8 percent larger than the corresponding tests with a 6-in. (152-mm) width. The tests 

completed in strong soil demonstrated larger increases in post-soil forces with an increase 

in post width as compared to the tests completed in weak soil. With only two data points, 

it was difficult to determine any specific finding with regards to the effect of post width 

on the overall post-soil interaction forces. However, the results suggest that as 

embedment depth increases, the effect of post width on the post-soil forces decreases.  

The results obtained for the comparison of 6-in and 8-in. (152-mm and 203-mm) 

wide posts found that the post-soil interaction forces tend to increase as the post width 

increases. Nearly all of the tests completed in both weak and strong soils follow this 

overall trend, but when the tests are compared against each other no conclusion can be 

made to establish an exact mathematical relationship. Force increase values between a 6-

in. and 8-in. (152-mm and 203-mm) width are shown below in Table 25. In order to 

better define the effect of post width on the post soil interaction forces, additional post 

testing is needed. This expanded testing should include additional post widths, such as 4 

and 10 in. (102 and 254 mm), additional embedment depths, such as 30 and 90 in. (762 

and 2,286 mm), and multiple tests should be conducted at each width, embedment depth 

and soil type.  

Table 25. Force Increase from 6-in. to 8-in. Width 

 

Testing Configuration Force Increase from 6-in. to 8-in. Width Force Increase at 15-in. of Displacement

48-in. Embedment in Weak Soil 1.06  - 1.10 1.07

72-in. Embedment in Weak Soil 1.14 - 1.25 1.25

96-in. Embedment in Weak Soil 1.00 - 1.08 1.07

48-in. Embedment in Strong Soil 1.42 - 1.47 1.43

72-in. Embedment in Strong Soil 1.11 - 1.13 1.12
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8.3 Embedment Depth  

During this testing series, an attempt was made to quantify the effect of post 

embedment depth on post-soil interaction forces by comparing the results of dynamic 

posttests with different embedment depths installed with similar post widths and soil 

types. Posts embedded at 78, 90, and 102 in. (1,981, 2,286 and 2,591 mm) were tested 

with a post width of 4 in. (102 mm) in weak soil. Embedment depths of 48 and 72 in. 

(1,219 and 1,829 mm) were tested with post widths of 6 and 8 in (152 and 203 mm) in 

weak and strong soil. These two post widths were additionally tests at a 96-in. (2,438 

mm) embedment depth in weak soil. It has been previously reported that the post-soil 

interaction forces due to the soil pressure increase with the square of the ratio of post 

embedment depths, as shown mathematically below and found in MASH [1]. 

𝐹2 = 𝐹1 (
𝐸𝐷2

𝐸𝐷1
)

2

  (54) 

8.3.1 4-in. Width in Weak Soil 

Test P3G-13 (HSS 4 in. x 8 in. x 110 in. x 3/16 in.) (102 mm x 203 mm x 2,794 

mm x 5 mm), P3G-14 (HSS 4 in. x 8 in. x 122 in. x 3/16 in.) (102 mm x 203 mm x 3,099 

mm x 5 mm), P3G-22 (HSS 4 in. x 8 in. x 122 in. x 3/8 in.) (102 mm x 203 mm x 3,099 

mm x 10 mm) and P3G-15 (HSS 4 in. x 8 in. x 134 in. x 3/16 in.) (102 mm x 203 mm x 

3,404 mm x 5 mm) had posts with widths of 4 in. (102 mm) and were tested in weak soil. 

Initially, it was hypothesized that test P3G-22 could be averaged with test P3G-14, 

because the only difference between these two tests was the post thickness. However, 

P3G-22 and P3G-14 were analyzed separately, because post-soil interactions were not 
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similar. Force vs. displacement and energy vs. displacement is provided in Figures 91 and 

92. 

Average force for embedment depths of 78, 90, and 102 in. (1,981, 2,286, and 

2,591 mm) at 5, 10, 15, and 20 in. (127, 254, 381, and 508 mm) of displacement are 

shown numerically in Tables 26 through 28. A table comparing all test results for a 4-in. 

(102-mm) post width in weak soil is shown in Table 29.  

Equation (54) suggests that the forces seen in a post at a 90-in. (2,286-mm) 

embedment should be around 33 percent higher than the forces seen in a post at a 78-in. 

(1,981-mm) embedment. This finding was not confirmed with test results, as shown in 

Table 26, with a post thickness of 3/16 in. (5 mm), it can be seen that Equation (54) 

correlates less with the experimental data at 20 in. (508 mm) of displacement but at 10 in. 

(254 mm) the experimental data agrees with the analytical relationship. When the data 

shown in Table 26 are averaged across all 20 in. (508 mm) of displacement a 1.5 percent 

error between the theoretical and experimental data is obtained.  

In test P3G-22 (HSS 4-in. x 8-in. x 122-in. x 3/8-in.), the post thickness was 

doubled to 3/8 in. (10 mm). As mentioned previously, it was originally assumed that the 

overall dynamic response should not differ much after the thickness was doubled, except 

for a small inertial spike at the beginning. However, the data did not match these 

expectations. Table 26 shows that throughout the test the post-soil force equation vastly 

overestimates the post-soil interaction forces. This suggests that Equation (54) is not 

valid when the post thickness is changed.  
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Table 26. Test Nos. P3G-13, P3G-14, P3G-22, and P3G-15 Average Force Values - 4-in. 

Width in Weak Soil 

 @ 5" @ 10" @ 15" @20" 

P3G-13 Average Force (kip), 78-in. Embedment 

HSS 4-in. x 8-in. x 110-in. x 3/16-in. 
9.10 8.39 7.37 6.97 

P3G-14 Average Force (kip), 90-in. Embedment 

HSS 4-in. x 8-in. x 122-in. x 3/16-in. 
11.62 11.18 10.21 10.00 

P3G-22 Average Force (kip), 90-in. Embedment 

HSS 4-in. x 8-in. x 122-in. x 3/8-in. 
19.55 14.99 13.74 13.58 

P3G-15 Average Force (kip), 102-in. Embedment 

HSS 4-in. x 8-in. x 134-in. x 3/16-in. 
11.15 12.64 12.81 12.85 

 

Table 27 compares tests P3G-13 (HSS 4-in. x 8-in. x 110-in. x 3/16-in.) and P3G-

15 (HSS 4-in. x 8-in. x 134-in. x 3/16-in.), which were tested at embedment depths of 72 

in. and 102 in. (1,828 and 2,591 mm). Equation (54) suggests that the forces seen in a 

post at a 102-in. (2,591-mm) embedment depth should be approximately 71 percent 

higher than those experienced by a post embedded at 72 in. (1,829 mm). Averaging the 

results in Table 27 across all 20 in. (508 mm) results in a 9.1 percent error between the 

experimental and theoretical data.  

Table 27. Test nos. P3G-13 and P3G-15  Force Values- 4-in. Width in Weak Soil 

 @ 5" @ 10" @ 15" @20" 

P3G-13 Average Force (kip), 78-in. Embedment 

HSS 4-in. x 8-in. x 110-in. x 3/16-in. 
9.10 8.39 7.37 6.97 

P3G-15 Average Force (kip), 102-in. Embedment 

HSS 4-in. x 8-in. x 134-in. x 3/16-in. 
11.15 12.64 12.81 12.85 

 

Tests P3G-14 (HSS 4-in x 8-in. x 122-in. x 3/16-in.) and P3G-15 (HSS 4-in. x 8-

in. x 134-in. x 3/16-in.) were tested at embedment depths of 90 and 102 in. (2,286 and 
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2,591 mm). Equation (54) suggests that a post embedded at 102 in. (2,591 mm) should 

experience forces which are approximately 28 percent higher than the force experienced 

by a post embedded at 90 in. (2,286). Results are summarized in Table 21. In general, 

estimates approached the experimental value but  

Table 28 Equation (54) did not represent the test data very well.  

In test P3G-22 (HSS 4-in. x 8-in. x 122-in. x 3/8-in.) the post thickness was 

doubled to 3/8 in. (10 mm). It was assumed that the overall dynamic response would not 

differ except for a small inertial spike at the beginning of the test, but the data shown in 

Table 28 indicates that the thicker post sustained a higher average force throughout the 

impact.  

Table 28. Test nos. P3G-14 and P3G-15 Average Force Values – 4-in. Width in Weak 

Soil 

 @ 5" @ 10" @ 15" @20" 

P3G-14 Average Force (kip), 90-in. Embedment 

HSS 4-in. x 8-in. x 122-in. x 3/16-in. 
11.62 11.18 10.21 10.00 

P3G-15 Average Force (kip), 102-in. Embedment 

HSS 4-in. x 8-in. x 134-in. x 3/16-in. 
11.15 12.64 12.81 12.85 
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Figure 91. Force vs. Displacement for P3G-13, P3G-14, P3G-22 and P3G-15  

 
Figure 92. Energy vs. Displacement for P3G-13, P3G-14, P3G-22, and P3G-15 
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Table 29 below shows the excepted and actual increase seen in the post-soil 

interaction forces as the embedment depth of the posts increases from 90 to 102 in. 

(2,286 and 2,591 mm). The data obtained from P3G-22 (HSS 4-in. x 8-in. x 122-in. x 3/8-

in.) was not included in this summary table because of the large discrepancies seen 

between the expected and actual force increases when comparing this test to the other 

tests. This discrepancy suggests that the change in post thickness at these embedment 

depths and at a post width of 4 in. (102 mm) impacts the validity of Equation (54), but 

more testing is needed to confirm these results. 

Table 29. Expected vs. Actual Force Increase – 4-in. Width in Weak Soil 

 
  

Embedment Change (in.) Expected Force Increase Actual Force Increase

78: 90 1.33 1.28 -1.43

78 : 102 1.71 1.23 - 1.84

90 : 102 1.28 .96 - 1.29

4-in Width In Weak Soil
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8.3.2 6-in. Width in Weak Soil 

Tests P3G-1 (HSS 6-in. x 8-in. x 84-in. x 3/16-in.), P3G-3 (HSS 6-in. x 8-in. x 

108-in. x 3/16-in.) and P3G-5 (HSS 6-in. x 8-in. x 132-in. x 3/16-in.) had posts with 

widths of 6 in. (152 mm) and were tested in weak soil. Force vs. displacement and energy 

vs. displacement can be seen in Figures 93 and 94. Average post-soil forces for 

embedment depths of 48, 72, and 96 in. (1,219, 1,829, 2,438 mm) at 5, 10, 15, and 20 in. 

(127, 254, 381, and 508 mm) of displacement are shown in Tables 30 through 32, and a 

comparison of all tests conducted with a 6-in. (152-mm) post width in weak soil are 

shown in Table 33. 

Equation (54) suggests that the forces seen in a post at an embedment depth of 72 

in. (1,829 mm) should be around 125 percent higher than the values seen in a post at an 

embedment depth of 48 in. (1,219 mm). Based on average force computations, 

researchers determined that the equation overestimated the post-soil resistance force, as 

shown in Table 30. 

 

Table 30. Test nos. P3G-1 and P3G-3 Average Force Values- 6-in. Width in Weak Soil 

 @ 5" @ 10" @ 15" @20" 

P3G-1 Average Force (kip), 48-in. Embedment 

HSS 4-in. x 8-in. x 110-in. x 3/16-in. 
12.80 7.96 6.43 5.66 

P3G-3 Average Force (kip), 72-in. Embedment 

HSS 4-in. x 8-in. x 122-in. x 3/16-in. 
17.92 11.59 10.09 9.66 

 

 

Test nos. P3G-1 (HSS 6-in. x 8-in. x 84-in. x 3/16-in.) and P3G-5 (HSS 6-in. x 8-

in. x 108-in. x 3/16-in.) were embedded to depths of 48 in. and 96 in. (1,219 mm and 
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2,438 mm) respectively. Equation (54) suggests that the soil resistance forces in a post 

with a 96-in. (2,438 mm) embedment depth should be 300 percent larger than the forces 

experienced by a post with a 48-in. (1,219 mm) embedment. The average force values 

shown in the table range from approximately a 56 to 207 percent increase, which is 

significantly less that what is expected.  

Table 31. Test nos. P3G-1 and P3G-5 Average Force Values- 6-in. Width in Weak Soil 

 @ 5" @ 10" @ 15" @20" 

P3G-1 Average Force (kip), 48-in. Embedment 

HSS 4-in. x 8-in. x 110-in. x 3/16-in. 
12.80 7.96 6.43 5.66 

P3G-5 Average Force (kip), 90-in. Embedment 

HSS 4-in. x 8-in. x 122-in. x 3/8-in. 
20.04 18.68 17.74 17.38 

 

 

Tests P3G-3 (HSS 6-in. x 8-in. x 108-in. x 3/16-in.) and P3G-5 (HSS 6-in. x 8-in. 

x 132-in. x 3/16-in.) were completed with embedment depths of 72 in. and 96 in. (1,829 

mm and 2,438 mm), respectively. Equation (54) states that the post-soil interaction forces 

seen in a post at a depth of 96 in. (2,438 mm) should be approximately 77 percent higher 

than the corresponding forces seen in a post embedded at 72 in. (1,829 mm). As shown in 

Table 32 the data indicates that at 15 and 20 in. (381 and 508 mm) of deflection the 

analytical model correlated well with the experimental data, but at smaller deflections the 

correlation was not apparent. 
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Table 32. Test nos. P3G-3 and P3G-5 Average Force Values- 6-in. Width in Weak Soil 

 @ 5" @ 10" @ 15" @20" 

P3G-3 Average Force (kip), 72-in. Embedment 

HSS 4-in. x 8-in. x 122-in. x 3/16-in. 
17.92 11.59 10.09 9.66 

P3G-5 Average Force (kip), 90-in. Embedment 

HSS 4-in. x 8-in. x 122-in. x 3/8-in. 
20.04 18.68 17.74 17.38 
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Figure 93. Force vs. Displacement for P3G-1, P3G-3 and P3G-5  

 
Figure 94. Energy vs. Displacement for P3G-1, P3G-3, and P3G-5 
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Table 33. Expected vs. Actual Force Increase – 6-in. Width in Weak Soil  

 
 

8.3.3 8-in. Width in Weak Soil 

Tests P3G-2 (HSS 8-in. x 8-in. x 84-in. x 3/16-in.), P3G-4 (HSS 8-in. x 8-in. x 

108-in. x 3/16-in.) and P3G-6 (HSS 8-in. x 8-in. x 132-in. x 3/16-in.) had posts with 

widths of 8 in. (203 mm) and were tested in weak soil. Force vs. displacement and energy 

vs. displacement can be seen in Figures 95 and 96. Average post-soil forces for 

embedment depths of 48, 72, and 96 in. (1,219, 1,829, and 2,438 mm) at 5, 10, 15, and 20 

in. (127, 254, 381, and 508 mm) of displacement are shown numerically in Tables 34 

through 36, and a table comparing all tests conducted with an 8-in. (203-mm) width in 

weak soil is shown in Table 37. 

Equation (54) suggests that the forces experienced in a post at an embedment 

depth of 72 in. (1,829 mm) should be around 125 percent higher than the force 

experienced in a post at an embedment depth of 48 in. (1,219 mm). However, as the 

displacement increases from 5 to 20 in. (127 to 508 mm), the difference in the forces 

experienced increased from approximately 50 to 98 percent as shown in Table 34. Again, 

Equation (54) overestimated the effect of embedment depths on forces.

Embedment Change Expected Force Increase Actual Force Increase

48 : 72 2.25 1.40 - 1.71

48 : 96 4.00 1.57 - 3.07

72 : 96 1.78 1.12 - 1.8

6-in. Width in Weak Soil
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Table 34. Test nos. P3G-2 and P3G-4 Average Force Values – 8-in. Width in Weak Soil 

 @ 5" @ 10" @ 15" @20" 

P3G-2 Average Force (kip), 48 in. Embedment 

HSS 8-in. x 8-in. x 84-in. x 3/16-in. 
13.62 8.72 6.89 6.05 

P3G-4 Average Force (kip), 72-in. Embedment 

HSS 8-in. x 8-in. x 108-in. x 3/16-in. 
20.45 13.90 12.57 11.99 

 

 Table 35 compares tests P3G-2 (HSS 8-in. x 8-in. x 84-in. x 3/16-in.) and P3G-6 

(HSS 8-in. x 8-in. x 132-in. x 3/16-in.) which were completed with embedment depths of 

48 in. and 96 in. (1,219 to 2,438-mm). Equation (54) suggests that the forces seen in a 

post at a 96-in. (2,438-mm) embedment should be 300 percent larger than the forces seen 

in a post at a 48-in. (1,219-mm) embedment. The equation-driven embedment depth 

amplification over predicted soil forces, which was consistent with other test results.  

Table 35. Test nos. P3G-2 and P3G-6 Average Force Values – 8-in. Width in Weak Soil  

 @ 5" @ 10" @ 15" @20" 

P3G-2 Average Force (kip), 48 in. Embedment 

HSS 8-in. x 8-in. x 84-in. x 3/16-in. 
13.62 8.72 6.89 6.05 

P3G-6 Average Force (kip), 90-in. Embedment 

HSS 8-in. x 8-in. x 132-in. x 3/16-in. 
20.13 19.54 18.94 18.76 

 

 

 Tests P3G-4 (HSS 8-in. x 8-in. x 108-in. x 3/16-in.) and P3G-6 (HSS 8-in. x 8-in. 

x 132-in. x 3/16-in.) were completed at 72 and 96-in. (1,829 and 2,438-mm) embedment 

depths. Using Equation (54) the estimated soil resistive forces for a post with an 

embedment depth of 96 in. (2,438 mm) should be approximately 78 percent higher than 

the corresponding soil resistive forces for a post with an embedment depth of 72 in. 
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(1,829 mm). Once again, physical test data indicated lower post-soil resistive force that 

the equation estimated.  

Table 36. Test nos. P3G-4 and P3G-6 Average Force Values – 8-in. Width in Weak Soil 

 @ 5" @ 10" @ 15" @20" 

P3G-4 Average Force (kip), 72-in. Embedment 

HSS 8-in. x 8-in. x 108-in. x 3/16-in. 
20.45 13.90 12.57 11.99 

P3G-6 Average Force (kip), 90-in. Embedment 

HSS 8-in. x 8-in. x 132-in. x 3/16-in. 
20.13 19.54 18.94 18.76 
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Figure 95. Force vs. Displacement for P3G-2, P3G-4 and P3G-6  

 
Figure 96. Energy vs. Displacement for P3G-2, P3G-4 and P3G-6  
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Table 37. Expected vs. Actual Force Increase – 8-in. Width in Weak Soil 

 
 

8.3.4 6-in. Width in Strong Soil 

Tests P3G-7 (HSS 6-in. x 8-in. x 84-in. x 3/16-in.), P3G-18 (HSS 6-in. x 8-in. x 

108-in. x 3/8-in.) had posts with widths of 6 in. (152 mm) and were tested in strong soil. 

Force vs. displacement and energy vs. displacement can be seen in Figures 97 and 98. 

Average post-soil forces for embedment depths of 48 and 72 in. (1,219 and 1,829 mm) at 

5, 10, 15, and 20 in. (127, 254, 381, 508 mm) of displacement are shown in Table 38, and 

a table comparing all tests conducted with a 6-in. (152-mm) width in strong soil is shown 

in Table 39.  

Using Equation (54), the soil resistive forces for a post at an embedment depth of 

72 in. (1,829 mm) should be approximately 125 percent larger than the post-soil forces 

associated with an embedment depth of 48 in. (1,219 mm). Table 36 shows that at large 

soil displacements, the difference in the average force values was approximately 120 

percent. Thus, experimental data correlates well with the analytical model at large 

deflections of 15 in. or more.  

Table 38. Test nos. P3G-7 and P3G-18 Average Force Values – 6’’ Width in Strong Soil 

 @ 5" @ 10" @ 15" @20" 

P3G-7 Average Force (kip), 48 in. Embedment 

HSS 6-in. x 8-in. x 84-in. x 3/16-in. 
15.03 14.75 14.13 13.14 

P3G-18 Average Force (kip), 72-in. Embedment 

HSS 6-in. x 8-in. x 108-in. x 3/8-in. 
29.89 26.75 28.38 28.85 

Embedment Change Expected Force Increase Actual Force Increase

48 : 72 2.25 1.5 - 1.98

48 : 96 4.00 1.48 - 3.10

72 : 96 1.78 .98 - 1.57

8-in. Width in Weak Soil
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Figure 97. Force vs. Displacement for P3G-7 and P3G-18  

 
Figure 98. Energy vs. Displacement for P3G-7 and P3G-18  
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Table 39. Expected vs. Actual Force Increase – 6-in. Width in Strong Soil 

 
 

8.3.5 8-in. Width in a Strong Soil 

Test nos. P3G-8 and P3G-17 (HSS 8-in. x 8-in. x 84-in. x 3/16-in. and 3/8-in.), 

which hold embedment depths of 48 in, were averaged together and plotted with test no 

P3G-19 (HSS 8-in. x 8-in. x 108-in. x 3/8-in.),which had an embedment depth of 72 in. 

Force vs. displacement and energy vs. displacement can be seen in Figures 99 and 100. 

Average post-soil forces for embedment depths of 48 and 72 in. (1,219 1,829 mm) at 5, 

10, 15, and 20 in. (127, 254, 381, 508 mm) of displacement are shown in Table 40.  

Equation (54) suggests that the forces seen in a post at an embedment depth of 72 

in. (1,829 mm) should be approximately 125 percent higher than the values seen in a post 

at an embedment depth of 48 in. (1,219 mm). Test results indicated that the equation 

overestimated post-soil forces at all bogie displacements.  

Table 40. The average of Test nos. P3G-8 and P3G-17 and Test no. P3G-19 Average 

Force Values – 8-in. Width in Strong Soil 

 @ 5" @ 10" @ 15" @20" 

P3G-8 and P3G-17 Average Force (kip), 48 in. Embedment 

HSS 8-in. x 8-in. x 84-in. x 3/16-in. and 3/8 in. 
22.06 21.68 20.27 18.72 

P3G-19 Average Force (kip), 72-in. Embedment 

HSS 8-in. x 8-in. x 108-in. x 3/8-in. 
33.20 30.29 31.73 32.05 

 

  

Embedment Change Expected Force Increase Actual Force Increase

48 : 72 2.25 1.99 - 2.2

6-in. Width in Strong Soil
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Figure 99. Force vs. Displacement for the average of P3G-8 and P3G-17 

 
Figure 100. Energy vs. Displacement for the Average of P3G-8 and P3G- and P3G-19  
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Table 41. Expected vs. Actual Force Increase – 8-in. Width in Strong Soil  

 
 

8.3.6 Embedment Depth Discussion  

Historically, the post-soil force estimation shown in Equation (54) has been used 

to estimate the stiffening effect of increasing embedment depth. Although higher 

embedment depths were associated with increased post-soil forces, the increase was not 

consistent with predictions. For example, the experimental data for posts with 6 in. (152 

mm) widths tested in strong soil showed that the equation overestimates the forces at 15 

in. (381 mm) of deflection by approximately 25 percent, while the equation overestimates 

the post-soil forces for an 8-in. (203-mm) wide post by approximately 70 percent at 15 in. 

(381 mm) of deflection. No constant coefficient was determined to relate all post-soil 

results based on width or embedment depth. 

The average post-soil forces at 15 in. (381 mm) of deflection were plotted and are 

shown in Figure 101. A summary table test results is shown in Table 42. Test data shows 

that as the difference in embedment depths increases, the assumed parabolic relationship 

is not as effective, but for small changes in embedment the result is more reasonable.  

If more tests at different embedment depths and widths were completed a graph 

such as the one shown below could potentially be used to estimate, through linear 

interpolation, the post-soil interaction forces for different embedment depths. Additional 

dynamic post testing at different widths and embedment depths needs to be completed 

before this type of tool can accurately predict the forces seen in posts at different 

embedment depths.  

Embedment Change Expected Force Increase Actual Force Increase

72 : 48 2.25 1.4 - 1.71

8-in. Width in Strong Soil
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Figure 101. Average Forces at 15 in. of Deflection vs. Embedment Depth 

Table 42. Expected vs Actual Force Increase 
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Embedment Change (in.) Expected Force Increase 4-in. Weak Soil 6-in. Weak Soil 8-in. Weak Soil 6-in. Strong Soil 8-in. Strong Soil

78 : 90 1.33 1.28 -1.43 - - - -

78 : 102 1.71 1.23 - 1.84 - - - -

90 : 102 1.28 .96 - 1.29 - - - -

48 : 72 2.25 - 1.40 - 1.71 1.5 - 1.98 1.99 - 2.2 1.4 - 1.71

48 : 96 4.00 - 1.57 - 3.07 1.48 - 3.10 - -

72 : 96 1.78 - 1.12 - 1.8 .98 - 1.57 - -

Actual Increase
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8.4 Soil Type  

During this testing series an attempt to quantify the effect of soil strength on post-

soil interaction forces was completed by comparing results for tests of posts with similar 

widths and embedment depths installed in different soils.  

Testing was completed on posts with both 6 and 8-in. (152 and 203-mm) widths 

in embedment depths of 48 and 72 in. (1,219 and 1,829 mm) in both weak and strong 

soil.  

8.4.1 6-in. Width in a 48-in Embedment 

Tests P3G-1 (HSS 6-in. x 8-in. x 84-in. x 3/16-in.) and P3G-7 (HSS 6-in. x 8-in. x 

84-in. x 3/16-in.) contained posts with 6-in. (152-mm) widths and were tested in a 48-in. 

(1,219-mm) embedment depth in both weak and strong soils. Force vs. displacement and 

energy vs. displacement can be seen in Figures 102 and 103. Average post-soil forces at 

5, 10, 15, and 20 in. (127, 254, 381, and 508 mm) of displacement are shown numerically 

in Table 43. 

The data in this table shows that the percent difference of the average forces 

between the posts installed in weak versus strong soil increased from approximately 17 to 

132 percent as the displacement increased from 5 to 20 in. (127 to 508 mm) of deflection.



177 

 

Table 43. Test nos. P3G-1 and P3G-7 Average Force Values – 6-in. Width in a 48-in. 

Embedment 

 @ 5" @ 10" @ 15" @20" 

P3G-1 Average Force (kip), 48 in. Embedment 

HSS 6-in. x 8-in. x 84-in. x 3/16-in., Weak Soil 
12.80 7.96 6.43 5.66 

P3G-7 Average Force (kip), 48-in. Embedment 

HSS 6-in. x 8-in. x 84-in. x 3/16-in., Strong Soil 
15.03 14.75 14.13 13.14 

Average Force Ratio 1.17 1.85 2.20 2.32 
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Figure 102. Force vs. Displacement for P3G-1 and P3G-7  

 
Figure 103. Energy vs. Displacement for P3G-1 and P3G-7  

-5

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70

F
o

rc
e

 (
k

ip
s

)

Displacement (in.)

P3G-1 vs. P3G-7 -- 6-in. Width in a 48-in. Embedment
Force vs. Displacement

P3G-1 Weak Soil (6-in. x 8-in. x 84-in. x 3/16-in.) P3G-7 Strong Soil (6-in. x 8-in. x 84-in. x 3/16-in.)

0

50

100

150

200

250

300

350

400

450

0 10 20 30 40 50 60 70

E
n

e
rg

y
 (

k
-i

n
.)

Displacement (in.)

P3G-1 vs. P3G-7 -- 6-in. Width in a 48-in. Embedment 
Energy vs. Displacement

P3G-1 Weak Soil (6-in. x 8-in. x 84-in. x 3/16-in.) P3G-7 Strong Soil (6-in. x 8-in. x 84-in. x 3/16-in.)



179 

 

8.4.1 6-in. Width in a 72-in. Embedment  

Tests P3G-3 (HSS 6-in. x 8-in. x 9-ft. x 3/16-in.) and P3G-18 (HSS 6-in. x 8-in. x 

9-ft. x 3/8-in.) contained posts with 6-in. (152-mm) widths and were tested in a 72-in. 

(1,829-mm) embedment depth in both weak and strong soils. Force vs. displacement and 

energy vs. displacement can be seen in Figures 104 and 105. Average post-soil forces at 

5, 10, 15, and 20 in. (127, 254, 381, and 508 mm) of displacement are shown numerically 

in Table 44. 

The data in this table shows that the percent difference of the average forces 

between the posts installed in weak versus strong soil increased from approximately 66 to 

199 percent as the displacement increased from 5 to 20 in. (127 to 508 mm) of deflection. 

 

Table 44. Test nos. P3G-3 and P3G-18 Average Force Values – 6-in. Width in a 72-in. 

Embedment 

 @ 5" @ 10" @ 15" @20" 

P3G-3 Average Force (kip), 72 in. Embedment 

HSS 6-in. x 8-in. x 108-in. x 3/16-in., Weak Soil 
17.92 11.59 10.09 9.66 

P3G-18 Average Force (kip), 72-in. Embedment 

HSS 6-in. x 8-in. x 108-in. x 3/16-in., Strong Soil 
29.89 26.75 28.38 28.85 

Average Force Ratio 1.67 3.98 2.81 2.99 
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Figure 104. Force vs. Displacement for P3G-3 and P3G-18  

 
Figure 105. Energy vs. Displacement for P3G-3 and P3G-18  
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8.4.2 8-in. Width in a 48-in. Embedment  

Tests P3G-2 (HSS 8-in. x 8-in. x 84-in. x 3/16-in.) and the average of P3G-8 and 

P3G-17 (HSS 8-in. x 8-in. x 84-in. x 3/16-in. and 3/8-in.) utilized posts with 8-in. (203-

mm) widths and were tested with 48-in. (1,219-mm) embedment depths in both weak and 

strong soil, respectively. Force vs. displacement and energy vs. displacement can be seen 

in Figures 106 and 107. Average post-soil forces at 5, 10, 15, and 20 in. (127, 254, 381, 

and 508 mm) of displacement are shown numerically in Table 45. 

The data in this table shows that the percent difference of the average forces 

between the posts installed in weak versus strong soil increased from approximately 62 to 

210 percent as the displacement increased from 5 to 20 in. (127 to 508 mm) of deflection. 

 

Table 45. Test nos. P3G-2 and the average of P3G-8 and P3G-17 Average Force Values – 

8-in. Width in a 48-in. Embedment 

 @ 5" @ 10" @ 15" @20" 

P3G-2 Average Force (kip), Weak Soil 

HSS 8-in. x 8-in. x 84-in. x 3/16-in. 
13.62 8.72 6.89 6.05 

P3G-8 & P3G-17 Average Force (kip), Strong Soil 

HSS 8-in. x 8-in. x 84-in. x 3/16-in. and 3/8-in. 
22.06 21.68 20.27 18.72 

Average Force Ratio 1.62 2.49 2.94 3.09 
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Figure 106. Force vs. Displacement for P3G-2 and the average of P3G-8 and P3G-17  

 
Figure 107. Energy vs. Displacement for P3G-2 and the average of P3G-8 and P3G-17  
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8.4.3 8-in. Width in a 72-in. Embedment  

Tests P3G-4 (HSS 8-in. x 8-in. x 108-in. x 3/16-in.) and P3G-19 (HSS 8-in. x 8-

in. x 108-in. x 3/8-in.) utilized 8-in. (203-mm) wide posts and were tested with 72-in. 

(1,829-mm) embedment depths in both weak and strong soils, respectively. Graphs of 

force vs. displacement and energy vs. displacement can be seen in Figures 108 and 109. 

Average force values at 5, 10, 15, and 20 in. (127, 254, 381, and 508 mm) of 

displacement are shown numerically in Table 46. 

The data in this table shows that the percent difference of the average forces 

between the posts installed in weak versus strong soil increased from approximately 62 to 

167 percent as the displacement increased from 5 to 20 in. (127 to 508 mm) of deflection. 

 

Table 46. Test nos. P3G-4 and P3G-19 Average Force Values – 8-in. Width in a 48-in. 

Embedment 

 @ 5" @ 10" @ 15" @20" 

P3G-4 Average Force (kip), 72 in. Embedment 

HSS 6-in. x 8-in. x 84-in. x 3/16-in., Weak Soil 
20.45 13.90 12.57 11.99 

P3G-19 Average Force (kip), 72-in. Embedment 

HSS 6-in. x 8-in. x 84-in. x 3/16-in., Strong Soil 
33.20 30.29 31.73 32.05 

Average Force Ratio 1.62 2.18 2.52 2.67 
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Figure 108. Force vs. Displacement for P3G-2 and the average of P3G-8 and P3G-17  

 
Figure 109. Energy vs. Displacement for P3G-2 and the average of P3G-8 and P3G-17 
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8.4.4 Soil Discussion 

The tests comparing weak and strong soils routinely shows that as the post 

deflection increases from 5 in. to 20 in. (127 mm to 508 mm), the average post-soil 

interaction forces for the tests completed in strong soil experiences forces 1.17 to 3.09 

times the forces seen for the tests completed in weak soil, as shown in Table 47. 

Unfortunately, no obvious relationship could be determined regarding the effect of post 

width and embedment depth. For example, as the embedment depth increased from 48 to 

72 in. (1,219 to 1,829 mm) with a 6-in. (152 mm) width post the average forces 

increased. The 8-in. wide posts, however had a different trend. More testing is 

recommended to discover the overlying principles of the post-soil interaction forces when 

the soil type is changed from weak to strong.  

Table 47. Force Increase from Weak to Strong Soil 

 
  

Testing Configuration Force Increase from Weak to Strong Soil Force Increase at 15-in. of Displacement

6-in. Width in a 48-in. Embedment 1.17 - 2.32 2.2

6-in. Width in a 72-in. Embedment 1.67 - 2.99 2.81

8-in. Width in a 48-in. Embedment 1.62 - 3.09 2.94

8-in. Width in a 72-in. Embedment 1.62 - 2.67 2.53
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8.5 Dimensionless Number Study 

8.5.1 Purpose and Motivation  

Dimensionless numbers or groups are quantitates that do not contain any physical 

dimensions and therefore may be used in any dimensionally consistent system. 

Frequently, non-dimensional relationships are explored to minimize the size of a test 

matrix. Dimensionless groups can be used to solve for important relationships.  

Dimensionless groups were created to investigate how post width, post thickness, 

and embedment depth were related. Instead of having to test all of these parameters 

individually it may be possible to just modify the dimensionless groups and perform a 

limited number of additional tests. This would save time and money by limiting the total 

number of experiments that need to be conducted.  

In this research study, multiple tests were completed with different post widths, 

embedment depths, thicknesses, and two types of soil, a smaller strong-soil matrix of the 

test results were unavailable due to post yielding. As a result, strong soil relationships 

were sparse and not explored in detail.  

8.5.2 Buckingham Pi Theorem  

The Buckingham Pi theorem is one of the most common methods used to obtain 

dimensionless or “pi” groups and can be completed with minimal mathematical training. 

First, the important variables of the system need to be examined and understood. It was 

determined that during the post impacts detailed in this thesis that the most important 

variables governing the force at 15 in. (318 mm) of deflection were the bogie velocity, 

post embedment depth, post mass, post width, and post thickness. A more rigorous 
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mathematical definition of this relationship can be seen below, and the variable 

definitions are shown in Table 48. 

𝐹 = 𝑓(𝑉𝐵, 𝐸𝐷 , 𝑚𝑃, 𝑊𝑃, 𝑡𝑃) 

Table 48. Pi Variables 

𝜋1 1st. Pi Group 

𝜋2 2nd. Pi Group 

𝜋3 3rd. Pi Group 

F Measured Force at 15 in. of Deflection 

𝑊𝑃 Post Width 

𝑡𝑃 Post Thickness 

𝑉𝐵 Bogie Velocity 

𝐸𝐷 Post Embedment Depth 

𝑚𝑃 Post Mass 

L Length 

T Time 

M Mass 

 

After the variables are discovered and listed the dimensions of each variable 

needs to be stated, which for this situation can be seen below. Note that there are a total 

of 6 different variables containing a total of three different dimensions, which are mass, 

length and time.  

𝐹: {𝑀𝐿𝑇−2};  𝑉𝐵: {𝐿𝑇−1};  𝐸𝐷: {𝐿};  𝑚𝑃: {𝑀};  𝑊𝑃: {𝐿};   𝑡𝑃: {𝐿}  

Next, after the number of variables and the number of dimensions is known the 

number of pi groups can be calculated with the equation seen below.  

𝑁𝑜. 𝑜𝑓 𝑃𝑖 𝐺𝑟𝑜𝑢𝑝𝑠 = 𝑁𝑜. 𝑜𝑓 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 − 𝑁𝑜. 𝑜𝑓 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 

𝑁𝑜. 𝑜𝑓 𝑃𝑖 𝐺𝑟𝑜𝑢𝑝𝑠 = 6 − 3 = 3 

The equation above shows that a total of 3 Pi groups are needed to describe this 

experimental situation. After the number of Pi groups are determined the number of 

repeating variables also needs to be found. This process is shown mathematically below. 
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𝑁𝑜. 𝑜𝑓 𝑅𝑒𝑝𝑒𝑎𝑡𝑖𝑛𝑔 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 = # 𝑜𝑓 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 − # 𝑜𝑓 𝑃𝑖 𝐺𝑟𝑜𝑢𝑝𝑠 

𝑁𝑜. 𝑜𝑓 𝑅𝑒𝑝𝑎𝑡𝑖𝑛𝑔 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 = 6 − 3 = 3 

There is no concrete way to determine which variables should be repeating while 

using the Buckingham Pi Theorem but after many iterations it was determined that the 

bogie velocity, post width, and post mass would yield three correct Pi groups. The 

derivation of these Pi groups is shown in the next section. 

8.5.3 Derivation of Dimensionless Groups  

Using the Buckingham Pi Theorem described above, three dimensionless groups 

were obtained and are shown below. As mentioned previously, the bogie velocity, post 

embedment and post mass were chosen as the three repeating variables in this situation. 

Dimensional relationships were modified until a unitless Pi group was obtained, as shown 

below. The variable and dimension definitions used in the derivation of these Pi groups 

are shown in Table 48. 

 

𝜋1 =  𝑉𝐵
𝑎𝑊𝑃

𝑏𝑚𝑃
𝑐𝐹 

{𝐿𝑇−1}𝑎{𝐿}𝑏{𝑀}𝑐{𝑀𝐿𝑇−2} = {𝑀𝑇𝐿}0 

{𝑀}(𝑐+1) {𝑇}(−𝑎−2) {𝐿}(𝑎+𝑏+1) = {𝑀𝑇𝐿}0 

𝑀: 𝑐 + 1 = 0; 𝑐 = −1 

𝑇: − 𝑎 − 2 = 0 ; 𝑎 = −2 

𝐿: 𝑎 + 𝑏 + 1 =  −2 + 𝑏 + 1 = 0; 𝑏 = 1 

𝜋1 =
𝐹𝑊𝑃

𝑉𝐵
2𝑚𝑃

 

 

𝜋2 = 𝑉𝐵
𝑎𝑊𝑃

𝑏𝑚𝑃
𝑐𝐸𝐷 
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{𝐿𝑇−1}𝑎{𝐿}𝑏{𝑀}𝑐{𝐿} = {𝑀𝑇𝐿}0 

{𝑀}(𝑐) {𝑇}(−𝑎) {𝐿}(𝑎+𝑏+1) = {𝑀𝑇𝐿}0 

𝑀: 𝑐 = 0 

𝑇: −𝑎 = 0 

𝐿: 𝑎 + 𝑏 + 1 =  0 + 𝑏 + 1 = 0; 𝑏 = −1 

𝜋2
−1 =

𝐸𝐷

𝑊𝑃
 

𝜋2 =
𝑊𝑃

𝐸𝐷
 

 

𝜋3 = 𝑉𝐵
𝑎𝑊𝑃

𝑏𝑚𝑃
𝑐𝑡𝑃 

{𝐿𝑇−1}𝑎{𝐿}𝑏{𝑀}𝑐{𝐿} = {𝑀𝑇𝐿}0 

{𝑀}(𝑐) {𝑇}(−𝑎) {𝐿}(𝑎+𝑏+1) = {𝑀𝑇𝐿}0 

𝑀: 𝑐 = 0 

𝑇: −𝑎 = 0 

𝐿: 𝑎 + 𝑏 + 1 =  0 + 𝑏 + 1 = 0; 𝑏 = −1 

𝜋3
−1 =

𝑡𝑃

𝑊𝑃
 

𝜋3 =
𝑊𝑃

𝑡𝑃
 

Summarized: 

𝜋1 =
𝐹𝑊𝑃

𝑉𝐵
2𝑚𝑃

 

𝜋2 =
𝑊𝑃

𝐸𝐷
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𝜋3 =
𝑊𝑃

𝑡𝑃
 

 

8.5.4 Dimensionless Graph  

Using the Buckingham Pi Theorem explained above, three dimensionless groups 

were co-plotted and results are shown in Figure 110. This graph shows for small 

𝜋2values, the relationship between 𝜋1 and 𝜋2 is linear. As 𝜋2 increases the relationship 

between 𝜋1 and 𝜋2 becomes parabolic or exponential. However, data is still limited, and 

although results are promising no definitive relationship was recommended.  

Results were also plotted based on the 𝜋3 values. The two curves at the lower 𝜋3 

values, seen on the left in Figure 110, have nearly the same slope; this could mean that 

under a certain 𝜋2 threshold value the dependency on the 𝜋2 value is very weak. If this is 

true, a single curve relationship can represent this data, this suggests that the thickness of 

the post, on the post-soil interaction forces, is not an important parameter until the ratio 

of width to embedment depth is large.  

For example, an engineer or designer could solve for the average post-soil force at 

15 in. (381 mm) of deflection with a known width, thickness, embedment depth, and 

mass based on a prescribed velocity. This could be completed by first solving for 𝜋2 

and 𝜋3. 𝜋2 will tell you the position on the x-axis and Pi 3 will tell you which of the 

curves you should be using. Then these two groups can be used to solve for the 𝜋1 group 

which can be used to back calculate the average force at 15 in. of deflection. As 

mentioned previously without more data, it is hard to use this type of graph as each 
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individual curve follows a particular Pi 3 value, and correct interpolation between these 

curves is very difficult, if not impossible.  

With the addition of more data to this diagram, either through experiments or 

computations, this method of force prediction could potentially, with accuracy, assist 

engineers when they are designing structures that require rectangular posts. Additionally, 

higher accuracy will be obtained with the addition of a soil bulk modulus or shear 

modulus, and the soil density, but the test data using strong soil was limited. Thus, these 

parameters were not taken into account with this this study. 

 
Figure 110. Dimensionless Diagram (Weak Soil)  
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Table 49. Dimensionless Groups Values 

 
 

 

PI 1 (F) Pi 2 (Wp/Ed) PI 1 (F) Pi 2 (Wp/Ed) PI 1 (F) Pi 2 (Wp/Ed) PI 1 (F) Pi 2 (Wp/Ed)

0.392 0.044 0.441 0.051 0.643 0.125 0.800 0.167

0.479 0.039 0.551 0.044 0.785 0.083 1.135 0.111

0.630 0.039 1.130 0.063 1.399 0.083

Pi 3 (Wp/tp) = 10.67 Pi 3 (Wp/tp) = 21.33 Pi 3 (Wp/tp)  = 32 Pi 3 (Wp/tp) = 42.67
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9 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

Determining the effect of parameter variations on the overall post-soil interaction 

forces during an impact scenario is no trivial task. In an effort to quantify the relationship 

between parameter variations and the overall post-soil interaction forces a testing regime 

was initiated and completed by incrementally changing post width, post embedment 

depth and soil type during bogie testing of thin walled rectangular posts. Comparisons 

were made between posts containing 6 and 8-in. (152 and 203-mm) widths, strong and 

weak soil, and post embedment depths of 48, 72, 90, 96 and 102 in. (1,219, 1,829, 2,286, 

and 2,591 mm). 

Testing of the posts containing 6 and 8 in. (152 and 203 mm) widths showed that 

the post-soil interaction forces increased as the width was increased. This relationship 

was shown in both weak and strong soils and at embedment depths of 48, 72, and 96 in. 

(1,219, 1,829, 2,438 mm). For example, the tests completed in weak soil show that at a 

48 and 96-in. (1,219 and 2,438-mm) embedment the force seen in the larger width was 

1.07 times larger than the force seen in the smaller width, at 15 in. (381 mm) of 

deflection, but the force seen in the larger width at a 72-in. (1,829-mm) embedment was 

1.25 times larger than the force seen in the smaller width, at 15 in. (381 mm) of 

deflection.  

An attempt to determine dimensionless groups for weak soil post testing results 

showed excellent promise, but data was too sparse to determine definite relationships. 

The three dimensionless groups are shown below.  

𝜋1 =
𝐹𝑊𝑃

𝑉𝐵
2𝑚𝑃
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𝜋2 =
𝑊𝑃

𝐸𝐷
 

𝜋3 =
𝑊𝑃

𝑡𝑃
 

Data from testing a 4 in. (102 mm) post in weak soil at embedment depths of 78, 

90, and 102 in. (1,981, 2,286, and 2,591 mm) in weak soil and the data from testing 6 and 

8 in. (152 and 203 mm) width posts in 48, 72, and 96 in. (1,219, 1,829, and 2,438 mm) in 

weak and strong soil showed that as the embedment depth was increased the post-soil 

interaction forces also increased, but the increase was lower than what was suggested by 

Equation (54), shown below. The tests completed with the 4 in. (102 mm) post width had 

average post-soil interaction forces at 15 in. (381 mm) of deflection very similar to the 

prediction using Equation (54), but the tests completed with post widths of 6 and 8 in. 

(152 and 203 mm) diverged significantly from the equation predictions. 

𝐹2 = 𝐹1 (
𝐸𝐷2

𝐷𝐷1
)

2

 

Results obtained from comparing tests completed in weak soil to those completed 

in strong soil show that during all of the tests the post-soil interaction forces seen in 

strong soil was always larger than what was seen in weak soil. Due to the minimal 

amount of data available for this comparison there were no other meaningful results 

garnered from this data set.  

The amount of differentiation required to correctly research post-soil interaction 

forces in an impact scenario is quite overwhelming and is a function of multiple 

parameters including: impact velocity, embedment depth, post mass, post width, post 

thickness, soil density, and soul shear or bulk modulus. Using some of these variables in 
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conjunction with the Buckingham Pi theorem yielded 3 dimensionless groups relating 

these variables to the post-soil interaction forces seen at 15 in. (381 mm) of deflection. 

As mentioned above more testing with different widths and embedment depths is 

recommended to further analyze this situation. 
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11 APPENDICES 
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 Lateral Impact 
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Figure A-1. Lateral Impact Loading Configuration 

Table A-1. Variable Definitions 

Variable Definition

Fi Impact Force

Fa Tensile Force at Top Clamp

Fr Reaction Force at Bottom of Post

Li Distance Between Impact and Top of Parapet

La Distance Between Top Clamp and Top of Parapet

Lr Distance Between Bottom of Post and Top of Parapet
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∑ 𝐹𝑥 = 0 = −𝐹𝑖 + 𝐹𝑎 − 𝐹𝑟 

 

𝐹𝑖 = 𝐹𝑎 − 𝐹𝑟   (𝐸𝑞𝑛. 1) 

 

 

∑ 𝑀𝑖 = 0 = 𝐹𝑎(𝐿𝑖 + 𝐿𝑎) − 𝐹𝑟(𝐿𝑟 + 𝐿𝑖) 

 

𝐹𝑎 =
𝐹𝑟(𝐿𝑟 + 𝐿𝑖)

(𝐿𝑖 + 𝐿𝑎)
  (𝐸𝑞𝑛. 2) 

 

 

𝑆𝑢𝑏 𝐸𝑞𝑛. 2 𝑖𝑛𝑡𝑜 𝐸𝑞𝑛.  1 

 

𝐹𝑖 =
𝐹𝑟(𝐿𝑟 + 𝐿𝑖)

(𝐿𝑖 + 𝐿𝑎)
− 𝐹𝑟 

 

𝐹𝑖 = 𝐹𝑟 [(
𝐿𝑟 + 𝐿𝑖

𝐿𝑖 + 𝐿𝑎
) − 1] 

 

𝐹𝑖 = 𝐹𝑟 [
(𝐿𝑟 + 𝐿𝑖) − (𝐿𝑖 + 𝐿𝑎)

(𝐿𝑖 + 𝐿𝑎)
] 

 

𝐹𝑖 =
𝐹𝑟(𝐿𝑟 − 𝐿𝑎)

(𝐿𝑖 + 𝐿𝑎)
  (𝐸𝑞𝑛. 3) 

 

 

 

∑ 𝑀𝑎 = 0 = 𝐹𝑖(𝐿𝑖 + 𝐿𝑎) − 𝐹𝑟(𝐿𝑟 − 𝐿𝑎) 

 

𝐹𝑖 =
𝐹𝑟(𝐿𝑟 − 𝐿𝑎)

(𝐿𝑖 + 𝐿𝑎)
  (𝐸𝑞𝑛. 4) 

 

𝐸𝑞𝑛. 3 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝐸𝑞𝑛. 4  ✓ 

 

 

 

∑ 𝑀𝑟 = 0 = 𝐹𝑖(𝐿𝑖 + 𝐿𝑟) − 𝐹𝑎(𝐿𝑟 − 𝐿𝑎) 

 

𝐹𝑖 =
𝐹𝑎(𝐿𝑟 − 𝐿𝑎)

(𝐿𝑖 + 𝐿𝑟)
  (𝐸𝑞𝑛. 5) 
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𝑆𝑢𝑏 𝐸𝑞𝑛. 5 𝑖𝑛𝑡𝑜 𝐸𝑞𝑛. 1 

 
𝐹𝑎(𝐿𝑟 − 𝐿𝑎)

(𝐿𝑖 + 𝐿𝑟)
= 𝐹𝑎 − 𝐹𝑟 

 

𝐹𝑟 = 𝐹𝑎 − 𝐹𝑎 [
(𝐿𝑟 − 𝐿𝑎)

(𝐿𝑖 + 𝐿𝑟)
] 

 

𝐹𝑟 = 𝐹𝑎 [1 −
(𝐿𝑟 − 𝐿𝑎)

(𝐿𝑖 + 𝐿𝑟)
] 

 

𝐹𝑟 = 𝐹𝑎 [
(𝐿𝑖 + 𝐿𝑟) − (𝐿𝑟 − 𝐿𝑎)

(𝐿𝑖 + 𝐿𝑟)
] 

 

𝐹𝑟 =
𝐹𝑎(𝐿𝑖 + 𝐿𝑎)

(𝐿𝑖 + 𝐿𝑟)
  

 

𝐹𝑎 =
𝐹𝑟(𝐿𝑖 + 𝐿𝑟)

(𝐿𝑖 + 𝐿𝑎)
  (𝐸𝑞𝑛. 6) 

 

𝐸𝑞𝑛. 2 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝐸𝑞𝑛. 6  ✓ 
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Figure A-2. Lateral Impact Shear and Moment Diagrams 

0 = −𝐹𝑖(𝐿𝑎 + 𝐿𝑖) + 𝐹𝑟(𝐿𝑟 − 𝐿𝑎) 

 

𝐹𝑖(𝐿𝑎 + 𝐿𝑖) = 𝐹𝑟(𝐿𝑟 − 𝐿𝑎) 

 

𝐹𝑖 =
𝐹𝑟(𝐿𝑟 − 𝐿𝑎)

(𝐿𝑖 + 𝐿𝑎)
  (𝐸𝑞𝑛. 7) 

 

𝐸𝑞𝑛. 7 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝐸𝑞𝑛. 4 ✓ 

 

 

𝑀𝑎 = 𝐹𝑖(𝐿𝑎 + 𝐿𝑖) 

 

𝑀𝑎 = 𝐹𝑟(𝐿𝑟 − 𝐿𝑎) 

 

𝐹𝑎 = 𝑇ℎ𝑒 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑇𝑒𝑛𝑠𝑖𝑜𝑛 𝐹𝑜𝑟𝑐𝑒 𝐼𝑚𝑝𝑎𝑟𝑡𝑒𝑑 𝑖𝑛𝑡𝑜 𝑈𝑝𝑝𝑒𝑟 𝐴𝑛𝑐ℎ𝑜𝑟𝑠 

 

𝑀𝑎 = 𝑇ℎ𝑒 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐵𝑒𝑛𝑑𝑖𝑛𝑔 𝑀𝑜𝑚𝑒𝑛𝑡 
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 Longitudinal Impact
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Figure B-1. Longitudinal Impact Loading Configuration 

Table B-1. Variable Definitions 

 

Variable Definition

Fi Impact Force

Fa Shear Force at Top Clamp

Fb Shear Force at Bottom Clamp

Li Distance Between Impact and Top of Parapet

La Distance Between Top Clamp and Top of Parapet

Lb Distance Between Bottom Clamp and Top of Parapet
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∑ 𝐹𝑥 = 0 = −𝐹𝑖 + 𝐹𝑎 − 𝐹𝑏 

 

𝐹𝑖 = 𝐹𝑎 − 𝐹𝑏  (𝐸𝑞𝑛. 1) 

 

 

∑ 𝑀𝑖 = 0 = 𝐹𝑎(𝐿𝑖 + 𝐿𝑎) − 𝐹𝑏(𝐿𝑏 + 𝐿𝑖) 

𝐹𝑎 =
𝐹𝑏(𝐿𝑏 + 𝐿𝑖)

(𝐿𝑖 + 𝐿𝑎)
  (𝐸𝑞𝑛. 2) 

 

 

𝑆𝑢𝑏 𝐸𝑞𝑛. 2 𝑖𝑛𝑡𝑜 𝐸𝑞𝑛.  1 

 

𝐹𝑖 =
𝐹𝑏(𝐿𝑏 + 𝐿𝑖)

(𝐿𝑖 + 𝐿𝑎)
− 𝐹𝑏 

 

𝐹𝑖 = 𝐹𝑏 [(
𝐿𝑏 + 𝐿𝑖

𝐿𝑖 + 𝐿𝑎
) − 1] 

 

𝐹𝑖 = 𝐹𝑏 [
(𝐿𝑏 + 𝐿𝑖) − (𝐿𝑖 + 𝐿𝑎)

(𝐿𝑖 + 𝐿𝑎)
] 

 

𝐹𝑖 =
𝐹𝑏(𝐿𝑏 − 𝐿𝑎)

(𝐿𝑖 + 𝐿𝑎)
  (𝐸𝑞𝑛. 3) 

 

 

 

∑ 𝑀𝑎 = 0 = 𝐹𝑖(𝐿𝑖 + 𝐿𝑎) − 𝐹𝑏(𝐿𝑏 − 𝐿𝑎) 

 

𝐹𝑖 =
𝐹𝑏(𝐿𝑏 − 𝐿𝑎)

(𝐿𝑖 + 𝐿𝑎)
  (𝐸𝑞𝑛. 4) 

 

𝐸𝑞𝑛. 3 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝐸𝑞𝑛. 4  ✓ 

 

 

 

∑ 𝑀𝑏 = 0 = 𝐹𝑖(𝐿𝑖 + 𝐿𝑏) − 𝐹𝑎(𝐿𝑏 − 𝐿𝑎) 

 

𝐹𝑖 =
𝐹𝑎(𝐿𝑏 − 𝐿𝑎)

(𝐿𝑖 + 𝐿𝑏)
  (𝐸𝑞𝑛. 5) 
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𝑆𝑢𝑏 𝐸𝑞𝑛. 5 𝑖𝑛𝑡𝑜 𝐸𝑞𝑛. 1 

 
𝐹𝑎(𝐿𝑏 − 𝐿𝑎)

(𝐿𝑖 + 𝐿𝑏)
= 𝐹𝑎 − 𝐹𝑏 

 

𝐹𝑏 = 𝐹𝑎 − 𝐹𝑎 [
(𝐿𝑏 − 𝐿𝑎)

(𝐿𝑖 + 𝐿𝑟)
] 

 

𝐹𝑏 = 𝐹𝑎 [1 −
(𝐿𝑏 − 𝐿𝑎)

(𝐿𝑖 + 𝐿𝑏)
] 

 

𝐹𝑏 = 𝐹𝑎 [
(𝐿𝑖 + 𝐿𝑏) − (𝐿𝑏 − 𝐿𝑎)

(𝐿𝑖 + 𝐿𝑏)
] 

 

𝐹𝑏 =
𝐹𝑎(𝐿𝑖 + 𝐿𝑎)

(𝐿𝑖 + 𝐿𝑏)
  

 

𝐹𝑎 =
𝐹𝑏(𝐿𝑖 + 𝐿𝑏)

(𝐿𝑖 + 𝐿𝑎)
  (𝐸𝑞𝑛. 6) 

 

𝐸𝑞𝑛. 2 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝐸𝑞𝑛. 6  ✓ 
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Figure B-2. Longitudinal Impact Shear and Moment Diagrams 

0 = −𝐹𝑖(𝐿𝑎 + 𝐿𝑖) + 𝐹𝑏(𝐿𝑏 − 𝐿𝑎) 

 

𝐹𝑖(𝐿𝑎 + 𝐿𝑖) = 𝐹𝑏(𝐿𝑏 − 𝐿𝑎) 

 

𝐹𝑖 =
𝐹𝑏(𝐿𝑏 − 𝐿𝑎)

(𝐿𝑖 + 𝐿𝑎)
  (𝐸𝑞𝑛. 7) 

 

𝐸𝑞𝑛. 7 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝐸𝑞𝑛. 4 ✓ 

 

 

𝑀𝑎 = 𝐹𝑖(𝐿𝑎 + 𝐿𝑖) 

 

𝑀𝑎 = 𝐹𝑏(𝐿𝑏 − 𝐿𝑎) 

 

𝐹𝑎 = 𝑇ℎ𝑒 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑆ℎ𝑒𝑎𝑟 𝐹𝑜𝑟𝑐𝑒 𝐼𝑚𝑝𝑎𝑟𝑡𝑒𝑑 𝑖𝑛𝑡𝑜 𝑈𝑝𝑝𝑒𝑟 𝐴𝑛𝑐ℎ𝑜𝑟𝑠 

 

𝑀𝑎 = 𝑇ℎ𝑒 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐵𝑒𝑛𝑑𝑖𝑛𝑔 𝑀𝑜𝑚𝑒𝑛𝑡 

 

𝐹𝑏 = 𝑇ℎ𝑒 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑆ℎ𝑒𝑎𝑟 𝐹𝑜𝑟𝑐𝑒 𝐼𝑚𝑝𝑎𝑟𝑡𝑒𝑑 𝑖𝑛𝑡𝑜 𝐿𝑜𝑤𝑒𝑟 𝐴𝑛𝑐ℎ𝑜𝑟𝑠 
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 Front Wind Loading
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Figure C-1. Front Wind Loading 

Table C-1. Variable Definitions  

Variable Definition

fw Wind Load Per Unit Length

Fw Total Effective Wind Load

Fa Tensile Force at Top Clamp

Fr Reaction Force at Bottom of Parapet

Hw Chain-Link Height

Lw Distance Between Center of Wind Load and Top of Parapet

La Distance Between Top Clamp and Top of Parapet

Lr Distance Between Bottom of Post and Top of Parapet
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First, the total effective wind load on the structure must be determined: 

∫ 𝑓𝑤𝑑𝑦

𝐻𝑤

0

= 𝐹𝑤 (55) 

Next, the centroid of the wind load can be determined: 

�̅� =
∑ 𝑦𝑖𝐴𝑖

∑𝐴𝑖
 (56) 

�̅� =
𝐿𝑤 ∗ 𝑓𝑤 ∗ 1

𝑓𝑤 ∗ 1
= 𝐿𝑤 (57) 

Now, a simplified model of the system that represents the wind load as a point 

load can be created and is shown below. 

 
Figure C-2. Front Wind Loading – Simplified Model 
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∑ 𝐹𝑥 = 0 = −𝐹𝑤 + 𝐹𝑎 − 𝐹𝑟 

 

𝐹𝑤 = 𝐹𝑎 − 𝐹𝑟   (𝐸𝑞𝑛. 1) 

 

 

∑ 𝑀𝑤 = 0 = 𝐹𝑎(𝐿𝑤 + 𝐿𝑎) − 𝐹𝑟(𝐿𝑟 + 𝐿𝑤) 

 

𝐹𝑎 =
𝐹𝑟(𝐿𝑟 + 𝐿𝑤)

(𝐿𝑤 + 𝐿𝑎)
  (𝐸𝑞𝑛. 2) 

 

 

𝑆𝑢𝑏 𝐸𝑞𝑛. 2 𝑖𝑛𝑡𝑜 𝐸𝑞𝑛.  1 

 

𝐹𝑤 =
𝐹𝑟(𝐿𝑟 + 𝐿𝑤)

(𝐿𝑤 + 𝐿𝑎)
− 𝐹𝑟 

 

𝐹𝑤 = 𝐹𝑟 [(
𝐿𝑟 + 𝐿𝑤

𝐿𝑤 + 𝐿𝑎
) − 1] 

 

𝐹𝑤 = 𝐹𝑟 [
(𝐿𝑟 + 𝐿𝑤) − (𝐿𝑤 + 𝐿𝑎)

(𝐿𝑤 + 𝐿𝑎)
] 

 

𝐹𝑤 =
𝐹𝑟(𝐿𝑟 − 𝐿𝑎)

(𝐿𝑤 + 𝐿𝑎)
  (𝐸𝑞𝑛. 3) 

 

 

 

∑ 𝑀𝑎 = 0 = 𝐹𝑤(𝐿𝑤 + 𝐿𝑎) − 𝐹𝑟(𝐿𝑟 − 𝐿𝑎) 

 

𝐹𝑤 =
𝐹𝑟(𝐿𝑟 − 𝐿𝑎)

(𝐿𝑤 + 𝐿𝑎)
  (𝐸𝑞𝑛. 4) 

 

𝐸𝑞𝑛. 3 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝐸𝑞𝑛. 4  ✓ 

 

 

 

∑ 𝑀𝑟 = 0 = 𝐹𝑤(𝐿𝑤 + 𝐿𝑟) − 𝐹𝑎(𝐿𝑟 − 𝐿𝑎) 

 

𝐹𝑤 =
𝐹𝑎(𝐿𝑟 − 𝐿𝑎)

(𝐿𝑤 + 𝐿𝑟)
  (𝐸𝑞𝑛. 5) 
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𝑆𝑢𝑏 𝐸𝑞𝑛. 5 𝑖𝑛𝑡𝑜 𝐸𝑞𝑛. 1 

 
𝐹𝑎(𝐿𝑟 − 𝐿𝑎)

(𝐿𝑤 + 𝐿𝑟)
= 𝐹𝑎 − 𝐹𝑟 

 

𝐹𝑟 = 𝐹𝑎 − 𝐹𝑎 [
(𝐿𝑟 − 𝐿𝑎)

(𝐿𝑤 + 𝐿𝑟)
] 

 

𝐹𝑟 = 𝐹𝑎 [1 −
(𝐿𝑟 − 𝐿𝑎)

(𝐿𝑤 + 𝐿𝑟)
] 

 

𝐹𝑟 = 𝐹𝑎 [
(𝐿𝑤 + 𝐿𝑟) − (𝐿𝑟 − 𝐿𝑎)

(𝐿𝑤 + 𝐿𝑟)
] 

 

𝐹𝑟 =
𝐹𝑎(𝐿𝑤 + 𝐿𝑎)

(𝐿𝑤 + 𝐿𝑟)
  

 

𝐹𝑎 =
𝐹𝑟(𝐿𝑤 + 𝐿𝑟)

(𝐿𝑤 + 𝐿𝑎)
  (𝐸𝑞𝑛. 6) 

 

𝐸𝑞𝑛. 2 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝐸𝑞𝑛. 6  ✓ 
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Figure C-3. Simplified Front Wind Loading Shear and Moment Diagrams 

 

0 = −𝐹𝑤(𝐿𝑎 + 𝐿𝑤) + 𝐹𝑟(𝐿𝑟 − 𝐿𝑎) 

 

𝐹𝑤(𝐿𝑎 + 𝐿𝑤) = 𝐹𝑟(𝐿𝑟 − 𝐿𝑎) 

 

𝐹𝑤 =
𝐹𝑟(𝐿𝑟 − 𝐿𝑎)

(𝐿𝑤 + 𝐿𝑎)
  (𝐸𝑞𝑛. 7) 

 

𝐸𝑞𝑛. 7 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝐸𝑞𝑛. 4 ✓ 

 

 

𝑀𝑎 = 𝐹𝑖(𝐿𝑎 + 𝐿𝑖) 

 

𝑀𝑎 = 𝐹𝑟(𝐿𝑟 − 𝐿𝑎) 

 

𝐹𝑎 = 𝑇ℎ𝑒 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑇𝑒𝑛𝑠𝑖𝑜𝑛 𝐹𝑜𝑟𝑐𝑒 𝐼𝑚𝑝𝑎𝑟𝑡𝑒𝑑 𝑖𝑛𝑡𝑜 𝑈𝑝𝑝𝑒𝑟 𝐴𝑛𝑐ℎ𝑜𝑟𝑠 𝑓𝑟𝑜𝑚 𝑊𝑖𝑛𝑑 

 

𝑀𝑎 = 𝑇ℎ𝑒 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐵𝑒𝑛𝑑𝑖𝑛𝑔 𝑀𝑜𝑚𝑒𝑛𝑡 𝑓𝑟𝑜𝑚 𝑊𝑖𝑛𝑑 
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 Back Wind Loading
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Figure D-1. Back Wind Loading 

Table D-1. Variable Definitions 

 
 

In this derivation the tensile force at the top clamp was neglected and only the 

tensile force at the bottom clamp was considered to represent the worst case scenario.

Variable Definition

fw Wind Load Per Unit Length

Fw Total Effective Wind Load

Fb Tensile Force at Bottom Clamp

Fr Reaction Force at Top of Parapet

Hw Chain-Link Height

Lw Distance Between Center of Wind Load and Top of Parapet

Lb Distance Between Bottom Clamp and Top of Parapet
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First, the total effective wind load on the structure must be determined: 

∫ 𝑓𝑤𝑑𝑦

𝐻𝑤

0

= 𝐹𝑤 (58) 

Next, the centroid of the wind load can be determined: 

�̅� =
∑ 𝑦𝑖𝐴𝑖

∑𝐴𝑖
 (59) 

�̅� =
𝐿𝑤 ∗ 𝑓𝑤 ∗ 1

𝑓𝑤 ∗ 1
= 𝐿𝑤 (60) 

Now, a simplified model of the system that represents the wind load as a point 

load can be created and is shown below. 

 
Figure D-2. Back Wind Loading – Simplified Model 
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∑ 𝐹𝑥 = 0 = 𝐹𝑤 + 𝐹𝑏 − 𝐹𝑟 

 

𝐹𝑤 = 𝐹𝑟 − 𝐹𝑏  (𝐸𝑞𝑛. 1) 

 

 

∑ 𝑀𝑤 = 0 = −𝐹𝑟𝐿𝑤 + 𝐹𝑏(𝐿𝑏 + 𝐿𝑤) 

 

𝐹𝑏 =
𝐹𝑟𝐿𝑤

(𝐿𝑏 + 𝐿𝑤)
  (𝐸𝑞𝑛. 2) 

 

 

𝑆𝑢𝑏 𝐸𝑞𝑛. 2 𝑖𝑛𝑡𝑜 𝐸𝑞𝑛.  1 

 

𝐹𝑤 = 𝐹𝑟 −
𝐹𝑟𝐿𝑤

(𝐿𝑤 + 𝐿𝑏)
 

 

𝐹𝑤 = 𝐹𝑟 [1 −
𝐿𝑤

(𝐿𝑏 + 𝐿𝑤)
] 

 

𝐹𝑤 = 𝐹𝑟 [
(𝐿𝑤 + 𝐿𝑏) − 𝐿𝑤

(𝐿𝑏 + 𝐿𝑤)
] 

 

𝐹𝑤 =
𝐹𝑟𝐿𝑏

(𝐿𝑤 + 𝐿𝑏)
  (𝐸𝑞𝑛. 3) 

 

 

∑ 𝑀𝑟 = 0 = −𝐹𝑤𝐿𝑤 + 𝐹𝑏𝐿𝑏 

 

𝐹𝑤 =
𝐹𝑏𝐿𝑏

𝐿𝑤
  (𝐸𝑞𝑛. 4) 

 

𝑆𝑢𝑏 𝐸𝑞𝑛. 4 𝑖𝑛𝑡𝑜 𝐸𝑞𝑛. 1 

 

 
𝐹𝑏𝐿𝑏

𝐿𝑤
= 𝐹𝑟 − 𝐹𝑏 

 

𝐹𝑟 =
𝐹𝑏𝐿𝑏

𝐿𝑤
+ 𝐹𝑏 

 

𝐹𝑟 = 𝐹𝑏 (
𝐿𝑏

𝐿𝑤
+ 1) 
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𝐹𝑟 = 𝐹𝑏 (
𝐿𝑏 + 𝐿𝑤

𝐿𝑤
) 

 

𝐹𝑏 = 𝐹𝑟 (
𝐿𝑤

𝐿𝑏 + 𝐿𝑤
)  (𝐸𝑞𝑛. 5) 

 

𝐸𝑞𝑛. 5 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝐸𝑞𝑛. 2 ✓ 

 

 

∑ 𝑀𝑏 = 0 = −𝐹𝑤(𝐿𝑤 + 𝐿𝑏) + 𝐹𝑟𝐿𝑏 

 

𝐹𝑤 =
𝐹𝑟𝐿𝑏

(𝐿𝑤 + 𝐿𝑏)
 

 

            𝐸𝑞𝑛. 6 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝐸𝑞𝑛. 3 ✓  
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Figure D-3. Simplified Back Wind Loading Shear and Moment Diagrams 

 

0 = 𝐹𝑤(𝐿𝑤) − 𝐹𝑏(𝐿𝑏) 

 

𝐹𝑤 =
𝐹𝑏𝐿𝑏

𝐿𝑤
 

 

𝐸𝑞𝑛. 7 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝐸𝑞𝑛. 4 

 

 

𝑀𝑟 = 𝐹𝑤𝐿𝑤 

 

𝑀𝑟 = 𝐹𝑏𝐿𝑏 
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 Dead Load
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Figure E-1. Dead Load Configuration 

Table E-1. Variable Definitions 

Variable Definition

W Weight of Dead Load

Fr Reaction Force due to Dead Load
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∑ 𝐹𝑦 = 0 = −𝑊 + 𝐹𝑟 

 

 

𝑊 = 𝐹𝑟 

 

 

𝐹𝑟 = 𝑆ℎ𝑒𝑎𝑟 𝐹𝑜𝑟𝑐𝑒 𝐼𝑚𝑝𝑎𝑟𝑡𝑒𝑑 𝑖𝑛𝑡𝑜 𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝐵𝑜𝑙𝑡𝑠
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 Chain Link Area Determination
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Figure F-1. Chain-Link Representation 

Table F-1. Variable Definitions 

 

Variable Definition

d Diamater of Chain-Link

S Chain-Link Mesh Size

Al Total Area in One Link

Am Surface Area in One Link

P Percent of Area Exposed to Wind in One Link

Af Area of Fence Section

Ap Total Chain Link Area per Fence Section

H Fence Height

L Fence Section Length
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𝐴𝑙 = (𝑆 + 𝑑)2   
 

𝐴𝑚 = 4𝑑(𝑆 + 𝑑) 

 

𝑃 =
𝐴𝑚

𝐴𝑙
 

 

𝐴𝑓 = 𝐻𝐿 

 

𝐴𝑝 = 𝑃𝐻𝐿 
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 Material Specifications 
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Table G-1. Bill of Materials, Test Nos. P3G-1 Through P3G-16 

Table G-2. Bill of Materials, Test Nos. P3G-17 Through P3G-23 

Item 

No. 
QTY. Description Material Spec Reference 

b1 1 HSS 8"x8"x3/8"x84" Long Tube ASTM A500 Grade B 
R#16-645 

H#824011 

b2 1 HSS 8"x6"x3/8"x108" Long Tube ASTM A500 Grade B 
R#16-645 

H#Y25146 

b3 1 HSS 8"x8"x3/8"x108" Long Tube ASTM A500 Grade B 
R#16-645 

H#824011 

b4 1 HSS 8"x6"x3/8"x132" Long Tube ASTM A500 Grade B 
R#16-645 

H#Y25146 

b5 1 HSS 8"x8"x3/8"x132" Long Tube ASTM A500 Grade B 
R#16-645 

H#824011 

b6 1 HSS 8"x4"x3/8"x122" Long Tube ASTM A500 Grade B 
R#16-645 

H#W23427 

Item 

No. 
QTY. Description Material Spec Reference 

a1 1 HSS 8”x6”x3/16”x84” Long Tube 
ASTM A500 Grade B 

Galv. 
H#A76506 

a2 1 HSS 8”x8”x3/16”x84” Long Tube 
ASTM A500 Grade B 

Galv. 
H#0181456 

a3 1 HSS 8”x6”x3/16”x108” Long Tube 
ASTM A500 Grade B 

Galv. 
H#A76506 

a4 1 HSS 8”x8”x3/16”x108” Long Tube 
ASTM A500 Grade B 

Galv. 
H#0181456 

a5 1 HSS 8”x6”x3/16”x132” Long Tube 
ASTM A500 Grade B 

Galv. 
H#A76506 

a6 1 HSS 8”x8”x3/16”x132” Long Tube 
ASTM A500 Grade B 

Galv. 
H#0181456 

a7 1 HSS 8”x4”x3/16”x110” Long Tube 
ASTM A500 Grade B 

Galv. 
H#659620 

a8 1 HSS 8”x4”x3/16”x122” Long Tube 
ASTM A500 Grade B 

Galv. 
H#659620 

a9 1 HSS 8”x4”x3/16”x134” Long Tube 
ASTM A500 Grade B 

Galv. 
H#659620 

a10 1 HSS 8”x4”x3/16”x72” Long Tube 
ASTM A500 Grade B 

Galv. 
H#659620 

d1 - AASHTO A-3 Sand 

No. 40 Sieve-51% min. 

pass 

No. 200 Sieve-10% max 

pass 

Plasticity Index-NP Fine 

Sand 

SMT R#16-

436/16-495 

d2 - Standard Strong Soil 
AASHTO M147 Grade 

B 
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b7 1 HSS 8"x4"x3/8"x134" Long Tube ASTM A500 Grade B 
R#16-645 

H#W23427 

d1 - AASHTO A-3 Sand 

No. 40 Sieve-51% min. 

pass No. 200 Sieve-

10% max. pass 

Plasticity Index-NP 

Fine Sand 

R#16-436/ 

R#16-495 

d2 - Standard Strong Soil 
AASHTO M147 Grade 

B 

Sieve Report 

provided 
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Figure G-1. 8-in. Square x 3/16-in. Steel Tubes, Test Nos. P3G-1 Through P3G-16 



232 

 

 
Figure G-2. 8-in. x 6-in. x 3/16-in. Steel Tube, Test Nos. P3G-1 Through P3G-23 
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Figure G-3. 8-in. x 6-in. x 3/16-in. Tubes, Test Nos. P3G-1 through P3G-23 
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Figure G-4. 8-in. x 4-in. x 3/16-in. Steel Tubes, Test Nos. P3G-1 through P3G-16 
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Figure G-5. 8-in. Square x 3/16-in. Tubes, Test Nos. P3G-1 through P3G-16 
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Figure G-6. Sand, Test Nos. P3G-1 through P3G-23 
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Figure G-7. Sand, Test Nos. P3G-1 through P3G-23 
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Figure G-8. 8-in. x 4-in. x ⅜-in. Tube, Test Nos P3G-17 through P3G-23 
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Figure G-9. 8-in. x 6-in. x ⅜-in. Tube, Test Nos. P3G-17 through P3G-23 
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Figure G-10. 8-in. x 8-in. x ⅜-in. Tube, Test Nos. P3G-17 through P3G-23 
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 Bogie Test Results 

The results of the recorded data from each accelerometer for every dynamic bogie 

test are provided in the summary sheets found in this appendix. Summary sheets include 

acceleration, velocity, and deflection vs. time plots as well as force vs. deflection and 

energy vs. deflection plots. 
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Figure H-1. Test No. P3G-1 Results (SLICE-1) 

Test Results Summary
Test Description: Event Duration: 0.1860  sec
Test Number: P3G-1 Max. Deflection: 68.4  in.
Test Date: 5/12/2016 Peak Force: 27.2  k
Failure Type: Initial Linear Stiffness: 12.5  k/in.

Total Energy: 234.2  k-in.
Post Properties

Post Type: @ 5" @ 10" @ 15" @20"

Post Size: 12.80 7.96 6.43 5.66
Post Length: 64.0 79.6 96.4 113.3
Embedment Depth:

Orientation:

Soil Properties
Gradation:
Moisture Content:
Compaction Method:

Impact Velocity: 25.5 mph (37.41 ft/s)
Impact Height:
Bogie Mass: 1876 lb

Accelerometer:
Camera Data:

Data Acquired

Average Force (k)
Energy (k-in.)

AASHTO Weak Soil

Compactor-tamped in 12-in. lifts

GoPros, AOS-8 Perpendicular

25 in.

SLICE-1

Bogie Test Summary

MIDWEST ROADSIDE SAFETY FACILITY

Test Information
8x6x3/16 tube w 48-in. embedment in weak soil

Soil shear and post rotation out of soil

Steel tube

8x6x3/16
84 in.
48 in.

Strong-Axis

Bogie Properties
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Figure H-2. Test No. P3G-1 Results (SLICE-2) 

Test Results Summary
Test Description: Event Duration: 0.1860  sec
Test Number: P3G-1 Max. Deflection: 68.2  in.
Test Date: 5/12/2016 Peak Force: 26.8  k
Failure Type: Initial Linear Stiffness: 12.3  k/in.

Total Energy: 240.9  k-in.
Post Properties

Post Type: @ 5" @ 10" @ 15" @20"

Post Size: 12.57 7.87 6.41 5.69
Post Length: 62.8 78.7 96.1 113.9
Embedment Depth:

Orientation:

Soil Properties
Gradation:
Moisture Content:
Compaction Method:

Impact Velocity: 25.5 mph (37.41 ft/s)
Impact Height:
Bogie Mass: 1876 lb

Accelerometer:
Camera Data: GoPros, AOS-8 Perpendicular

25 in.

SLICE-2

Bogie Test Summary

MIDWEST ROADSIDE SAFETY FACILITY

Test Information
8x6x3/16 tube w 48-in. embedment in weak soil

Soil shear and post rotation out of soil

Steel tube

8x6x3/16
84 in.
48 in.

Strong-Axis

Bogie Properties

Data Acquired

Average Force (k)
Energy (k-in.)

AASHTO Weak Soil

Compactor-tamped in 12-in. lifts
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Figure H-3. Test No. P3G-2 Results (SLICE-1) 

Test Results Summary
Test Description: Event Duration: 0.1860  sec
Test Number: P3G-2 Max. Deflection: 74.9  in.
Test Date: 5/12/2016 Peak Force: 29.2  k
Failure Type: Initial Linear Stiffness: 13.2  k/in.

Total Energy: 224.0  k-in.
Post Properties

Post Type: @ 5" @ 10" @ 15" @20"

Post Size: 13.62 8.72 6.89 6.05
Post Length: 68.1 87.2 103.4 121.0
Embedment Depth:

Orientation:

Soil Properties
Gradation:
Moisture Content:
Compaction Method:

Impact Velocity: 27.06 mph (39.68 ft/s)
Impact Height:
Bogie Mass: 1876 lb
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Figure H-4. Test No. P3G-2 Results (SLICE-2) 

Test Results Summary
Test Description: Event Duration: 0.1860  sec
Test Number: P3G-2 Max. Deflection: 74.7  in.
Test Date: 5/12/2016 Peak Force: 28.4  k
Failure Type: Initial Linear Stiffness: 13.1  k/in.

Total Energy: 226.0  k-in.
Post Properties

Post Type: @ 5" @ 10" @ 15" @20"

Post Size: 13.33 8.54 6.79 5.99
Post Length: 66.7 85.4 101.9 119.8
Embedment Depth:

Orientation:

Soil Properties
Gradation:
Moisture Content:
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Figure H-5. Test No. P3G-3 Results (SLICE-1) 

Test Results Summary
Test Description: Event Duration: 0.2720  sec
Test Number: P3G-3 Max. Deflection: 61.1  in.
Test Date: 5/13/2016 Peak Force: 27.1  k
Failure Type: Initial Linear Stiffness: 10.8  k/in.

Total Energy: 509.1  k-in.
Post Properties

Post Type: @ 5" @ 10" @ 15" @20"

Post Size: 17.92 11.59 10.09 9.66
Post Length: 89.6 115.9 151.3 193.2
Embedment Depth:
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Gradation:
Moisture Content:
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Figure H-6. Test No. P3G-3 Results (SLICE-2) 

Test Results Summary
Test Description: Event Duration: 0.2720  sec
Test Number: P3G-3 Max. Deflection: 60.6  in.
Test Date: 5/13/2016 Peak Force: 26.5  k
Failure Type: Initial Linear Stiffness: 11.2  k/in.

Total Energy: 509.2  k-in.
Post Properties

Post Type: @ 5" @ 10" @ 15" @20"

Post Size: 17.89 11.58 10.09 9.70
Post Length: 89.5 115.8 151.3 194.0
Embedment Depth:

Orientation:

Soil Properties
Gradation:
Moisture Content:
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Impact Velocity: 26.09 mph (38.27 ft/s)
Impact Height:
Bogie Mass: 1876 lb

Accelerometer:
Camera Data: GoPros, AOS-8 Perpendicular
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Figure H-7. Test No. P3G-4 Results (SLICE-1) 

Test Results Summary
Test Description: Event Duration: 0.2900  sec
Test Number: P3G-4 Max. Deflection: 61.9  in.
Test Date: 5/18/2016 Peak Force: 31.0  k
Failure Type: Initial Linear Stiffness: 13.4  k/in.

Total Energy: 526.3  k-in.
Post Properties

Post Type: @ 5" @ 10" @ 15" @20"

Post Size: 20.45 13.90 12.57 11.99
Post Length: 102.2 139.0 188.5 239.8
Embedment Depth:

Orientation:
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Gradation:
Moisture Content:
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Figure H-8. Test No. P3G-4 Results (SLICE-2) 

Test Results Summary
Test Description: Event Duration: 0.2900  sec
Test Number: P3G-4 Max. Deflection: 60.9  in.
Test Date: 5/18/2016 Peak Force: 30.3  k
Failure Type: Initial Linear Stiffness: 13.3  k/in.

Total Energy: 527.4  k-in.
Post Properties

Post Type: @ 5" @ 10" @ 15" @20"

Post Size: 20.22 13.84 12.58 12.07
Post Length: 101.1 138.4 188.7 241.4
Embedment Depth:

Orientation:

Soil Properties
Gradation:
Moisture Content:
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Impact Velocity: 26.6 mph (39.01 ft/s)
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Figure H-9. Test No. P3G-5 Results (SLICE-1) 

Test Results Summary
Test Description: Event Duration: 0.2340  sec
Test Number: P3G-5 Max. Deflection: 32.0  in.
Test Date: 5/19/2016 Peak Force: 28.1  k
Failure Type: Initial Linear Stiffness: 11.9  k/in.

Total Energy: 508.2  k-in.
Post Properties

Post Type: @ 5" @ 10" @ 15" @20"

Post Size: 20.04 18.68 17.74 17.38
Post Length: 100.2 186.8 266.1 347.6
Embedment Depth:

Orientation:
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Gradation:
Moisture Content:
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Impact Velocity: 25.99 mph (38.12 ft/s)
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Figure H-10. Test No. P3G-5 Results (SLICE-2) 

Test Results Summary
Test Description: Event Duration: 0.2340  sec
Test Number: P3G-5 Max. Deflection: 31.9  in.
Test Date: 5/19/2016 Peak Force: 27.5  k
Failure Type: Initial Linear Stiffness: 11.9  k/in.

Total Energy: 508.2  k-in.
Post Properties

Post Type: @ 5" @ 10" @ 15" @20"

Post Size: 19.48 18.38 17.58 17.31
Post Length: 97.4 183.8 263.7 346.3
Embedment Depth:

Orientation:
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Gradation:
Moisture Content:
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Impact Velocity: 25.99 mph (38.12 ft/s)
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Figure H-11. Test No. P3G-6 Results (SLICE-1) 

Test Results Summary
Test Description: Event Duration: 0.1360  sec
Test Number: P3G-6 Max. Deflection: 29.7  in.
Test Date: 5/19/2016 Peak Force: 29.2  k
Failure Type: Initial Linear Stiffness: 12.6  k/in.

Total Energy: 511.2  k-in.
Post Properties

Post Type: @ 5" @ 10" @ 15" @20"

Post Size: 20.13 19.54 18.94 18.76
Post Length: 100.6 195.4 284.1 375.2
Embedment Depth:
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Gradation:
Moisture Content:
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Impact Height:
Bogie Mass: 1876 lb

Accelerometer:
Camera Data:

Data Acquired

Average Force (k)
Energy (k-in.)

AASHTO Weak Soil

GoPros, AOS-9 Perpendicular

25 in

SLICE-1

Bogie Test Summary

MIDWEST ROADSIDE SAFETY FACILITY

Test Information
8x8x3/16 tube w 96-in. embedment in weak soil

Post Rotation

Steel tube

8x8x3/16
132 in.
96 in.

Strong-Axis

Bogie Properties

-5

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

Fo
rc

e
 (

k
)

Deflection (in.)

Force vs. Deflection At Impact Location

0

100

200

300

400

500

600

0 5 10 15 20 25 30 35

E
n

e
rg

y
 (

k
-i

n
.)

Deflection (in.)

Energy vs. Deflection At Impact Location

-2

0

2

4

6

8

10

12

14

16

18

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
A

cc
e

le
ra

ti
o

n
 (

g
's

)
Time (s)

Bogie Acceleration vs. Time

-10

-5

0

5

10

15

20

25

30

35

40

45

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

V
e

lo
ci

ty
 (

ft
/s

)

Time (s)

Bogie Velocity vs. Time

0

5

10

15

20

25

30

35

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

D
e

fl
e

ct
io

n
 (

in
.)

Time (s)

Deflection at Impact Location vs. Time



253 

 

 
Figure H-12. Test No. P3G-6 Results (SLICE-2) 

Test Results Summary
Test Description: Event Duration: 0.1360  sec
Test Number: P3G-6 Max. Deflection: 29.4  in.
Test Date: 5/19/2016 Peak Force: 28.4  k
Failure Type: Initial Linear Stiffness: 12.7  k/in.

Total Energy: 511.6  k-in.
Post Properties

Post Type: @ 5" @ 10" @ 15" @20"

Post Size: 19.81 19.38 18.96 18.84
Post Length: 99.1 193.8 284.4 376.7
Embedment Depth:

Orientation:

Soil Properties
Gradation:
Moisture Content:
Compaction Method:

Impact Velocity: 26.09 mph (38.27 ft/s)
Impact Height:
Bogie Mass: 1876 lb

Accelerometer:
Camera Data: GoPros, AOS-9 Perpendicular
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Figure H-13. Test No. P3G-7 Results (SLICE-1) 

Test Results Summary
Test Description: Event Duration: 0.2240  sec
Test Number: P3G-7 Max. Deflection: 48.2  in.
Test Date: 5/11/2016 Peak Force: 25.0  k
Failure Type: Initial Linear Stiffness: 12.2  k/in.

Total Energy: 423.1  k-in.
Post Properties

Post Type: @ 5" @ 10" @ 15" @20"

Post Size: 15.03 14.75 14.13 13.14
Post Length: 75.2 147.5 211.9 262.8
Embedment Depth:

Orientation:

Soil Properties
Gradation:
Moisture Content:
Compaction Method:

Impact Velocity: 24.47 mph (35.89 ft/s)
Impact Height:
Bogie Mass: 1876 lb

Accelerometer:
Camera Data: GoPros, AOS-8 Perpendicular
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Figure H-14. Test No. P3G-7 Results (SLICE-2) 

Test Results Summary
Test Description: Event Duration: 0.2240  sec
Test Number: P3G-7 Max. Deflection: 48.4  in.
Test Date: 5/12/2016 Peak Force: 24.4  k
Failure Type: Initial Linear Stiffness: 11.9  k/in.

Total Energy: 423.5  k-in.
Post Properties

Post Type: @ 5" @ 10" @ 15" @20"

Post Size: 14.58 14.24 13.72 12.90
Post Length: 72.9 142.4 205.8 257.9
Embedment Depth:

Orientation:

Soil Properties
Gradation:
Moisture Content:
Compaction Method:

Impact Velocity: 24.47 mph (35.89 ft/s)
Impact Height:
Bogie Mass: 1876 lb

Accelerometer:
Camera Data: GoPros, AOS-8 Perpendicular
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Figure H-15. Test No. P3G-8 Results (SLICE-1) 

Test Results Summary
Test Description: Event Duration: 0.2060  sec
Test Number: P3G-8 Max. Deflection: 37.1  in.
Test Date: 5/12/2016 Peak Force: 31.1  k
Failure Type: Initial Linear Stiffness: 13.9  k/in.

Total Energy: 470.0  k-in.
Post Properties

Post Type: @ 5" @ 10" @ 15" @20"

Post Size: 22.20 23.28 21.46 18.88
Post Length: 111.0 232.8 322.0 377.5
Embedment Depth:

Orientation:

Soil Properties
Gradation:
Moisture Content:
Compaction Method:

Impact Velocity: 25.22 mph (36.99 ft/s)
Impact Height:
Bogie Mass: 1876 lb

Accelerometer:
Camera Data:
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Figure H-16. Test No. P3G-8 Results (SLICE-2) 

Test Results Summary
Test Description: Event Duration: 0.2060  sec
Test Number: P3G-8 Max. Deflection: 37.4  in.
Test Date: 5/13/2016 Peak Force: 30.2  k
Failure Type: Initial Linear Stiffness: 14.0  k/in.

Total Energy: 469.8  k-in.
Post Properties

Post Type: @ 5" @ 10" @ 15" @20"

Post Size: 21.72 22.61 20.97 18.67
Post Length: 108.6 226.1 314.6 373.4
Embedment Depth:

Orientation:

Soil Properties
Gradation:
Moisture Content:
Compaction Method:

Impact Velocity: 25.22 mph (36.99 ft/s)
Impact Height:
Bogie Mass: 1876 lb

Accelerometer:
Camera Data: GoPros, AOS-8 Perpendicular
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Figure H-17. Test No. P3G-13 Results (SLICE-1) 

Test Results Summary
Test Description: Event Duration: 0.1860  sec
Test Number: P3G-13 Max. Deflection: 55.0  in.
Test Date: 5/18/2016 Peak Force: 17.1  k
Failure Type: Initial Linear Stiffness: 3.7  k/in.

Total Energy: 432.6  k-in.
Post Properties

Post Type: @ 5" @ 10" @ 15" @20"

Post Size: 9.10 8.39 7.37 6.97
Post Length: 45.5 83.9 110.6 139.3
Embedment Depth:

Orientation:

Soil Properties
Gradation:
Moisture Content:
Compaction Method:

Impact Velocity: 25.04 mph (36.72 ft/s)
Impact Height:
Bogie Mass: 1876 lb

Accelerometer:
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Figure H-18. Test No. P3G-13 Results (SLICE-2) 

Test Results Summary
Test Description: Event Duration: 0.1860  sec
Test Number: P3G-13 Max. Deflection: 53.9  in.
Test Date: 5/18/2016 Peak Force: 16.7  k
Failure Type: Initial Linear Stiffness: 4.6  k/in.

Total Energy: 436.3  k-in.
Post Properties

Post Type: @ 5" @ 10" @ 15" @20"

Post Size: 11.38 8.90 7.74 7.28
Post Length: 56.9 89.0 116.1 145.6
Embedment Depth:

Orientation:

Soil Properties
Gradation:
Moisture Content:
Compaction Method:

Impact Velocity: 25.04 mph (36.72 ft/s)
Impact Height:
Bogie Mass: 1876 lb

Accelerometer:
Camera Data: GoPros, AOS-9 Perpendicular
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Figure H-19. Test No. P3G-14 Results (SLICE-1) 

Test Results Summary
Test Description: Event Duration: 0.1500  sec
Test Number: P3G-14 Max. Deflection: 44.3  in.
Test Date: 5/18/2016 Peak Force: 16.6  k
Failure Type: Initial Linear Stiffness: 4.5  k/in.

Total Energy: 482.4  k-in.
Post Properties

Post Type: @ 5" @ 10" @ 15" @20"

Post Size: 11.62 11.18 10.21 10.00
Post Length: 58.1 111.8 153.1 199.9
Embedment Depth:

Orientation:

Soil Properties
Gradation:
Moisture Content:
Compaction Method:

Impact Velocity: 26.09 mph (38.27 ft/s)
Impact Height:
Bogie Mass: 1876 lb

Accelerometer:
Camera Data: GoPros, AOS-9 Perpendicular
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Figure H-20. Test No. P3G-14 Results (SLICE-2) 

Test Results Summary
Test Description: Event Duration: 0.1500  sec
Test Number: P3G-14 Max. Deflection: 43.9  in.
Test Date: 5/18/2016 Peak Force: 16.2  k
Failure Type: Initial Linear Stiffness: 4.3  k/in.

Total Energy: 484.5  k-in.
Post Properties

Post Type: @ 5" @ 10" @ 15" @20"

Post Size: 11.40 11.04 10.16 10.01
Post Length: 57.0 110.4 152.4 200.1
Embedment Depth:

Orientation:

Soil Properties
Gradation:
Moisture Content:
Compaction Method:

Impact Velocity: 26.09 mph (38.27 ft/s)
Impact Height:
Bogie Mass: 1876 lb

Accelerometer:
Camera Data: GoPros, AOS-9 Perpendicular
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Figure H-21. Test No. P3G-15 Results (SLICE-1) 

Test Results Summary
Test Description: Event Duration: 0.1060  sec
Test Number: P3G-15 Max. Deflection: 35.5  in.
Test Date: 6/1/2016 Peak Force: 18.1  k
Failure Type: Initial Linear Stiffness: 7.2  k/in.

Total Energy: 394.3  k-in.
Post Properties

Post Type: @ 5" @ 10" @ 15" @20"

Post Size: 11.15 12.64 12.81 12.85
Post Length: 55.8 126.4 192.1 257.0
Embedment Depth:

Orientation:

Soil Properties
Gradation:
Moisture Content:
Compaction Method:

Impact Velocity: 26.5 mph (38.86 ft/s)
Impact Height:
Bogie Mass: 1876 lb
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Figure H-22. Test No. P3G-15 Results (SLICE-2) 

Test Results Summary
Test Description: Event Duration: 0.1060  sec
Test Number: P3G-15 Max. Deflection: 35.6  in.
Test Date: 6/1/2016 Peak Force: 17.8  k
Failure Type: Initial Linear Stiffness: 7.4  k/in.

Total Energy: 392.8  k-in.
Post Properties

Post Type: @ 5" @ 10" @ 15" @20"

Post Size: 11.00 12.47 12.66 12.74
Post Length: 55.0 124.7 189.9 254.7
Embedment Depth:

Orientation:

Soil Properties
Gradation:
Moisture Content:
Compaction Method:

Impact Velocity: 26.5 mph (38.86 ft/s)
Impact Height:
Bogie Mass: 1876 lb

Accelerometer:
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Figure H-23. Test No. P3G-16 Results (SLICE-1) 

Test Results Summary
Test Description: Event Duration: 0.1120  sec
Test Number: P3G-16 Max. Deflection: 38.8  in.
Test Date: 5/20/2016 Peak Force: 16.1  k
Failure Type: Initial Linear Stiffness: 8.4  k/in.

Total Energy: 246.6  k-in.
Post Properties

Post Type: @ 5" @ 10" @ 15" @20"

Post Size: 7.96 8.17 7.85 7.55
Post Length: 39.8 81.7 117.7 150.9
Embedment Depth:

Orientation:

Soil Properties
Gradation:
Moisture Content:
Compaction Method:

Impact Velocity: 24.29 mph (35.63 ft/s)
Impact Height:
Bogie Mass: 1876 lb

Accelerometer:
Camera Data:
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Figure H-24. Test No. P3G-16 Results (SLICE-2) 

Test Results Summary
Test Description: Event Duration: 0.1120  sec
Test Number: P3G-16 Max. Deflection: 38.8  in.
Test Date: 5/20/2016 Peak Force: 15.7  k
Failure Type: Initial Linear Stiffness: 9.7  k/in.

Total Energy: 247.4  k-in.
Post Properties

Post Type: @ 5" @ 10" @ 15" @20"

Post Size: 8.31 8.10 7.79 7.54
Post Length: 41.6 81.0 116.9 150.8
Embedment Depth:

Orientation:

Soil Properties
Gradation:
Moisture Content:
Compaction Method:

Impact Velocity: 24.29 mph (35.63 ft/s)
Impact Height:
Bogie Mass: 1876 lb

Accelerometer:
Camera Data:

Data Acquired

Average Force (k)
Energy (k-in.)
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Figure H-25. Test No. P3G-17 Results (SLICE-1) 

Test Results Summary
Test Description: Event Duration: 0.1760  sec
Test Number: P3G-17 Max. Deflection: 46.9  in.
Test Date: 6/7/2016 Peak Force: 52.7  k
Failure Type: Initial Linear Stiffness: 15.4  k/in.

Total Energy: 610.0  k-in.
Post Properties

Post Type: @ 5" @ 10" @ 15" @20"

Post Size: 21.92 20.07 19.07 18.56
Post Length: 109.6 200.7 286.1 371.2
Embedment Depth:

Orientation:

Soil Properties
Gradation:
Moisture Content:
Compaction Method:

Impact Velocity: 20.87 mph (30.61 ft/s)
Impact Height:
Bogie Mass: 5212 lb

Accelerometer:
Camera Data: GoPros, AOS-9 Perpendicular
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Figure H-26. Test No. P3G-17 Results (SLICE-2) 

Test Results Summary
Test Description: Event Duration: 0.1760  sec
Test Number: P3G-17 Max. Deflection: 46.8  in.
Test Date: 6/7/2016 Peak Force: 52.2  k
Failure Type: Initial Linear Stiffness: 11.5  k/in.

Total Energy: 612.5  k-in.
Post Properties

Post Type: @ 5" @ 10" @ 15" @20"

Post Size: 25.17 20.20 19.72 18.72
Post Length: 125.8 202.0 295.8 374.3
Embedment Depth:

Orientation:

Soil Properties
Gradation:
Moisture Content:
Compaction Method:

Impact Velocity: 20.87 mph (30.61 ft/s)
Impact Height:
Bogie Mass: 5212 lb

Accelerometer:
Camera Data: GoPros, AOS-9 Perpendicular
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Figure H-27. Test No. P3G-18 Results (SLICE-1) 

Test Results Summary
Test Description: Event Duration: 0.1180  sec
Test Number: P3G-18 Max. Deflection: 40.0  in.
Test Date: 6/7/2016 Peak Force: 62.2  k
Failure Type: Initial Linear Stiffness: 14.5  k/in.

Total Energy: 1091.1  k-in.
Post Properties

Post Type: @ 5" @ 10" @ 15" @20"

Post Size: 29.89 26.75 28.38 28.85
Post Length: 149.4 267.5 425.7 577.0
Embedment Depth:

Orientation:

Soil Properties
Gradation:
Moisture Content:
Compaction Method:

Impact Velocity: 26.33 mph (38.61 ft/s)
Impact Height:
Bogie Mass: 5212 lb

Accelerometer:
Camera Data: GoPros, AOS-9 Perpendicular

25 in.

SLICE-1

Bogie Test Summary

MIDWEST ROADSIDE SAFETY FACILITY

Test Information
8x6x3/8 tube w 72-in. embedment depth

Steel

8x6x3/8
108 in.
72 in.

Strong-Axis

Bogie Properties

Data Acquired

Average Force (k)
Energy (k-in.)

AASHTO Strong Soil

-10

0

10

20

30

40

50

60

70

0 10 20 30 40 50

Fo
rc

e
 (

k
)

Deflection (in.)

Force vs. Deflection At Impact Location

0

200

400

600

800

1000

1200

0 10 20 30 40 50

E
n

e
rg

y
 (

k
-i

n
.)

Deflection (in.)

Energy vs. Deflection At Impact Location

-2

0

2

4

6

8

10

12

14

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
A

cc
e

le
ra

ti
o

n
 (

g
's

)
Time (s)

Bogie Acceleration vs. Time

-10

-5

0

5

10

15

20

25

30

35

40

45

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

V
e

lo
ci

ty
 (

ft
/s

)

Time (s)

Bogie Velocity vs. Time

0

5

10

15

20

25

30

35

40

45

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

D
e

fl
e

ct
io

n
 (

in
.)

Time (s)

Deflection at Impact Location vs. Time



269 

 

 
Figure H-28. Test No. P3G-18 Results (SLICE-2) 

Test Results Summary
Test Description: Event Duration: 0.1180  sec
Test Number: P3G-18 Max. Deflection: 39.8  in.
Test Date: 6/7/2016 Peak Force: 54.6  k
Failure Type: Initial Linear Stiffness: 9.6  k/in.

Total Energy: 1093.8  k-in.
Post Properties

Post Type: @ 5" @ 10" @ 15" @20"

Post Size: 26.56 27.99 29.39 29.33
Post Length: 132.8 279.9 440.8 586.5
Embedment Depth:

Orientation:

Soil Properties
Gradation:
Moisture Content:
Compaction Method:

Impact Velocity: 26.33 mph (38.61 ft/s)
Impact Height:
Bogie Mass: 5212 lb

Accelerometer:
Camera Data: GoPros, AOS-9 Perpendicular
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Figure H-29. Test No. P3G-19 Results (SLICE-1) 

Test Results Summary
Test Description: Event Duration: 0.1240  sec
Test Number: P3G-19 Max. Deflection: 37.3  in.
Test Date: 6/8/2016 Peak Force: 68.1  k
Failure Type: Initial Linear Stiffness: 17.2  k/in.

Total Energy: 1129.0  k-in.
Post Properties

Post Type: @ 5" @ 10" @ 15" @20"

Post Size: 33.20 30.29 31.73 32.05
Post Length: 166.0 302.9 476.0 641.0
Embedment Depth:

Orientation:

Soil Properties
Gradation:
Moisture Content:
Compaction Method:

Impact Velocity: 25.66 mph (37.64 ft/s)
Impact Height:
Bogie Mass: 5005 lb

Accelerometer:
Camera Data: GoPros, AOS-9 Perpendicular
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Figure H-30. Test No. P3G-19 Results (SLICE-2) 

Test Results Summary
Test Description: Event Duration: 0.1240  sec
Test Number: P3G-19 Max. Deflection: 38.2  in.
Test Date: 6/8/2016 Peak Force: 64.0  k
Failure Type: Initial Linear Stiffness: 9.5  k/in.

Total Energy: 1124.1  k-in.
Post Properties

Post Type: @ 5" @ 10" @ 15" @20"

Post Size: 20.17 25.06 28.67 29.78
Post Length: 100.8 250.6 430.1 595.5
Embedment Depth:

Orientation:

Soil Properties
Gradation:
Moisture Content:
Compaction Method:

Impact Velocity: 25.66 mph (37.64 ft/s)
Impact Height:
Bogie Mass: 5005 lb

Accelerometer:
Camera Data: GoPros, AOS-9 Perpendicular
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Figure H-31. Test No. P3G-22 Results (SLICE-1) 

Test Results Summary
Test Description: Event Duration: 0.1500  sec
Test Number: P3G-22 Max. Deflection: 41.4  in.
Test Date: 6/8/2016 Peak Force: 32.2  k
Failure Type: Initial Linear Stiffness: 15.3  k/in.

Total Energy: 553.0  k-in.
Post Properties

Post Type: @ 5" @ 10" @ 15" @20"

Post Size: 19.55 14.99 13.74 13.58
Post Length: 97.8 149.9 206.1 271.6
Embedment Depth:

Orientation:

Soil Properties
Gradation:
Moisture Content:
Compaction Method:

Impact Velocity: 27.38 mph (40.16 ft/s)
Impact Height:
Bogie Mass: 1876 lb

Accelerometer:
Camera Data:
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Figure H-32. Test No. P3G-22 Results (SLICE-2) 

Test Results Summary
Test Description: Event Duration: 0.1500  sec
Test Number: P3G-22 Max. Deflection: 41.0  in.
Test Date: 6/8/2016 Peak Force: 31.1  k
Failure Type: Initial Linear Stiffness: 14.5  k/in.

Total Energy: 554.5  k-in.
Post Properties

Post Type: @ 5" @ 10" @ 15" @20"

Post Size: 18.88 14.81 13.64 13.64
Post Length: 94.4 148.1 204.6 272.8
Embedment Depth:

Orientation:

Soil Properties
Gradation:
Moisture Content:
Compaction Method:

Impact Velocity: 27.38 mph (40.16 ft/s)
Impact Height:
Bogie Mass: 1876 lb

Accelerometer:
Camera Data: GoPros, AOS-9 Perpendicular
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Figure H-33. Test No. P3G-23 Results (SLICE-1) 
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Figure H-34. Test No. P3G-23 Results (SLICE-2)

Test Results Summary
Test Description: Event Duration: 0.1620  sec
Test Number: P3G-23 Max. Deflection: 42.8  in.
Test Date: 6/8/2016 Peak Force: 37.2  k
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Total Energy: 702.2  k-in.
Post Properties
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Embedment Depth:

Orientation:
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Gradation:
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Impact Velocity: 30.58 mph (44.84 ft/s)
Impact Height:
Bogie Mass: 1876 lb
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 Filtering Study 
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11.1 Background 

The Society of Automotive Engineers (SAE) established guidelines for measuring 

and analyzing data for impact events in SAE J211 [37].Two acceleration filters were 

used: 

• To estimate forces, a CFC 60 filter is applied. 

• To estimate vehicle and occupant displacements and injury risk, a CFC 180 fitler 

is used. 

Both filters are high pass filters, in which frequencies above the cutoff are 

attenuated significantly.  

11.2 Research Objectives 

During an impact event, stress waves, part oscillations, harmonics and instrument 

noise can affect acceleration data. The SAE J211/1 recommendations for CFC 60 or CFC 

180 filters may not be well suited for all impact test analysis. This study was completed 

to determine the limitations on filter representations of data shapes.  

11.3 Scope 

Researchers evaluated the filter effects on data pulses for three wave forms and 

eight pulse durations: 

• Square Waves 

• Sawtooth Waves 

• Triangle Waves 

• 50, 25, 15, 10, 15, 7.5, 5, 2.5, 1 ms Durations 

These waves and durations were inserted into the CFC 60 filter and a comparison 

was made between the raw and filtered output. This study looked at how changing the 
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duration of a burst pulse affected the output from the CFC 60 filter. A nominal sampling 

frequency of 10,000 Hz. was used to generate the raw data.  

11.4 Methods 

After the acceleration pulses were inserted into the digital filter, maxima were 

identified and recorded. The ratio of filter maxima to input data was was also calculated 

and was displayed on the output graphs as: “Filter Max / Input Max”. Researchers also 

calculated the peak slope of the filtered data as well, using linear approximation of peak-

to-rise amplitude and time duration. Internal functions within excel were used to 

determine the slope from 0 to the maximum value and is displayed on the graphical 

outputs. For he square and triangle wave pulses the slope from the maximum value back 

to 0 is the negative version of the displayed value. The increase and decrease slopes for 

sawtooth waves are different and both of these values are displayed on the graphical 

outputs. 

11.5 Square Wave Pulses 

Square wave pulses ranging between 50 and 1 millisecond were input into the 

CFC 60 filter to determine the amount of attenuation and amplification that occurs. 

Square wave results are shown in the figures below and summarized in the table. 

  



279 

 

 
Figure I-1. 50 ms. Square Wave Pulse 

 
Figure I-2. . 25 ms. Square Wave Pulse 

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0.985 0.995 1.005 1.015 1.025 1.035 1.045 1.055 1.065

A
c
c
e

le
ra

ti
o

n
 (
g

's
)

Time (sec)

CFC 60 Filtered Acceleration vs Input Acceleration
Filter Max / Input Max = 1.067

Slope = 125.545 g's/s

CFC Filtered Acceleration Input Acceleration

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0.985 0.995 1.005 1.015 1.025 1.035

A
c
c
e

le
ra

ti
o

n
 (
g

's
)

Time (sec)

CFC 60 Filtered Acceleration vs Input Acceleration
Filter Max / Input Max = 1.067

Slope = 125.544 g's/s

CFC Filtered Acceleration Input Acceleration



280 

 

 
Figure I-3. 15 ms. Square Wave Pulse 

 
Figure I-4. 10 ms. Square Wave Pulse 
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Figure I-5. 7.5 ms. Square Wave Pulse 

 
Figure I-6. 5 ms. Square Wave Pulse 
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Figure I-7. 2.5 ms. Square Wave Pulse 

 
Figure I-8. 1 ms. Square Wave Pulse 
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Table 50. Filter Max / Input Max and Filter Slope for Square Waves 

 

11.5.1 Square Wave Discussion 

Pulses between 7.5 and 10 ms are slightly amplified near the center of the pulse 

but when the pulse is between 1 and 5 ms in length the data is attenuated to a very high 

degree. This suggests that impact events occurring between 7.5 and 10 ms will be slightly 

amplified in the resulting filtered acceleration but it appears that this amplification is 

minimal and pulse durations of this size will be accurately captured with the CFC 60 

system. Even though data up until 7.5 ms is accurately represented, events occurring in 

less than 5 ms are being attenuated far too much and accelerations are not being 

represented in the correct way. 

11.6 Sawtooth Wave Pulse 

As mentioned previously a square wave is not the most realistic representation of 

an impact event because it takes a finite amount of time for the load to go from zero to 

some value. In an attempt to model an impact event more realistically sawtooth waves 

were inserted into the same CFC 60 filtration system that was used to test the square 

waves. Even though this model is more realistic than the square wave data it still has 

some problems. This is mainly due to the fact that the signal will not decrease 

instantaneously to zero, which is exactly how these waves are modeled. The output 

Pulse Length (ms) Filter Max / Input Max Slope (g's/s)

50 1.067 125.545

25 1.067 125.544

15 1.066 125.405

10 1.084 130.577

7.5 1.096 137.042

5 0.997 146.556

2.5 0.660 110.037

1 0.309 54.254
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graphs show the maximum output of the filtered data divided by the maximum input from 

the sawtooth wave signal at both the beginning and ending of the pulse and it also shows 

the slope of the signal as it increases from 0 to a maximum as well as the slope from the 

maximum value as it decreases back to zero, with the assumption that these slopes act 

linearly over the periods. 
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Figure I-9.  50 ms. Sawtooth Wave Pulse  

 
Figure I-10.  25 ms. Sawtooth Wave Pulse  
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Figure I-11.  15 ms. Sawtooth Wave Pulse  

 
Figure I-12. 10 ms. Sawtooth Wave Pulse  
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Figure I-13.  7.5 ms. Sawtooth Wave Pulse  

 
Figure I-14.  5 ms. Sawtooth Wave Pulse  
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Figure I-15. 2.5 ms. Sawtooth Wave Pulse  

 
Figure I-16. 1 ms. Sawtooth Wave Pulse  
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Table I-1. Filter Max / Input Max and Filter Slope for Sawtooth Waves 

 
 

11.6.1 Sawtooth Wave Discussion 

The resulting graphical outputs shown above suggest that when impacts are 

modeled as sawtooth waves and subjected to a CFC 60 filter the resulting output data is 

captured fairly well between 50 and 15 ms, but values less than 15 ms seem to experience 

attenuation levels that are quite severe and non-negligible. For example, when using a 5 

ms pulse the acceleration profile is attenuated by around 40% when compared to the 

nonfiltered data. This sort of attenuation is too large and could easily result in the wrong 

decision being made when very fast impact events occur. This suggests that if impact 

events can be modeled as sawtooth waves the resulting acceleration and force plots for 

longer duration events are correctly represented but events that occur over very small 

durations of time are over attenuated.  

11.7 Triangle Wave Pulses 

Square and sawtooth waves are very simple ways of modeling an impact event 

but both of these waves experience a change in amplitude instantaneously which is 

obviously an unrealistic modeling technique. In an attempt to more correctly model an 

impact event triangle waves were inserted into the same CFC 60 filter that was used to 

test the square and triangle waves. Since these triangle waves contain both an initial and 

ending slope that occurs over a finite amount of time they should function as the best 

Pulse Length (ms) Initial Filter Max / Input Max Initial Slope (g's/s) Ending Filter Max / Input Max Initial Slope (g's/s)

50 0.961 19.485 0.991 -127.065

25 0.899 36.382 0.926 -123.484

15 0.827 54.793 0.851 -119.844

10 0.752 71.643 0.771 -113.319

7.5 0.686 81.66 0.698 -107.375

5 0.566 83.214 0.570 -93.458

2.5 0.345 58.467 0.345 -58.532

1 0.156 27.409 0.156 -27.411
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model when compared against the square and sawtooth waves. The output graphs show 

the maximum output of the filtered data divided by the maximum input from the square 

wave signal and it also shows the slope of the signal as it increases from 0 to a maximum 

with the assumption that the slope acts linearly over this period. 
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Figure I-17.  50 ms. Triangle Wave Pulse  

 
Figure I-18. 25 Triangle Wave Pulse 
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Figure I-19. 15 ms. Triangle Wave Pulse  

 
Figure I-20. 10 ms. Triangle Wave Pulse 
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Figure I-21. 7.5 ms. Triangle Wave Pulse  

 
Figure I-22. 5 ms. Triangle Wave Pulse 
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Figure I-23. 2.5 ms. Triangle Wave Pulse 

 
Figure I-24. 1 ms Triangle Wave Pulse 
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Table I-2. Filter Max / Input Max and Filter Slope for Triangle Waves 

 
 

11.8 Triangle Wave Discussion 

The resulting graphical outputs shown above suggest that when impacts are 

modeled as triangle waves and subjected to a CFC 60 filter they are, for the most part, 

represented well and do not experience very much attenuation or amplification until pulse 

lengths are less than 10 ms. Between 50 and 10 ms the amount of attenuation increases 

from about 4 to 18 percent and after 10 ms it quickly decreases down to unacceptable 

levels. This suggests that if an impact can be correctly modeled as a triangle wave 

adverse attenuation will most likely not occur until the pulse length is below 10 ms. 

Pulse Length (ms) Filter Max / Input Max Slope (g's/s)

50 0.968 34.808

25 0.935 61.132

15 0.893 86.736

10 0.825 104.441

7.5 0.741 107.424

5 0.589 94.978

2.5 0.401 57.356

1 0.143 25.048
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